【四 (1)数据可视化之如何选用正确的图表】

2024-03-16 19:04

本文主要是介绍【四 (1)数据可视化之如何选用正确的图表】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 文章导航
    • 一、数据分析中可视化的作用
      • 1、揭示数据关联和模式
      • 2、支持数据分析和决策
      • 3、提升沟通和共享效果
      • 4、强调关键信息和发现
      • 5、增强故事叙述和记忆效果
      • 6、有效增强数据交互性数据
      • 7、复杂信息易理解
      • 8、数据多维度显示
    • 二、如何选用合适的图表
      • 1、简洁性避免使用过于复杂或繁琐的图表,以免使读者感到困惑。选择简单明了的图表类型,突出关键信息。
      • 2、可读性确保图表易于阅读和理解。使用清晰的标签、图例和颜色编码,以帮助读者快速理解图表内容。
      • 3、数据准确性确保图表中的数据准确无误,并避免误导读者。
      • 4、目的明确在选择图表之前,明确你的目的和受众。不同的图表类型适用于不同的目的和受众,因此需要根据实际情况进行选择。
      • 5、可视化图表分类
    • 三、python可视化包及其优缺点
    • 四、常见图表样式
      • 1.1、条形图
      • 1.2、堆叠条形图
      • 1.3、百分百堆叠条形图
      • 2、直方图
      • 3、折线图
      • 4、面积图
      • 5、饼图
      • 6、环形图
      • 7、玫瑰图
      • 8、热力图
      • 9、雷达图
      • 10、桑葚图
      • 11、词云图
      • 12、地图
      • 13、仪表盘
      • 14、水球图
      • 15、箱型图
      • 16、K线图

文章导航

【一 简明数据分析进阶路径介绍(文章导航)】

一、数据分析中可视化的作用

1、揭示数据关联和模式

可视化可以直观地展示数据之间的关联和模式,帮助人们发现隐藏在数据背后的故事和趋势。

2、支持数据分析和决策

通过可视化工具,用户可以更好地理解和分析数据,发现其中的模式和趋势,从而做出更准确、有依据的决策。

3、提升沟通和共享效果

可视化可以将复杂的数据信息以直观、易懂的方式展示,使数据传达更加有效。同时,它也可以帮助人们更好地表达和分享数据,促进沟通和理解,避免信息的误解和歧义。

4、强调关键信息和发现

通过可视化,可以将关键信息和发现突出显示,使其更加显眼和易于理解。这有助于人们聚焦在数据中最重要的部分,减少冗余信息,提高数据理解的效率。

5、增强故事叙述和记忆效果

可视化可以帮助人们通过图形和图表的方式讲述一个故事,使数据更具有说服力和记忆效果。

6、有效增强数据交互性数据

可视化鼓励用户探索和操控数据,从而发现其中的奥秘。与静态图表相比,它提供了更高的交互性和动态性。

7、复杂信息易理解

人类大脑处理视觉信息的速度比书面信息快10倍。因此,使用图表总结复杂的数据可以确保比混乱的报告或电子表格更快地理解关系。

8、数据多维度显示

在可视化分析中,数据可以进行分类、排序、组合并显示每个维度的值,以便可以看到表示对象或事件数据的多个属性或变量。

二、如何选用合适的图表

选择合适的图表类型需要考虑数据的特点、目标受众的需求以及传达的信息,需要兼顾以下几点

1、简洁性避免使用过于复杂或繁琐的图表,以免使读者感到困惑。选择简单明了的图表类型,突出关键信息。

2、可读性确保图表易于阅读和理解。使用清晰的标签、图例和颜色编码,以帮助读者快速理解图表内容。

3、数据准确性确保图表中的数据准确无误,并避免误导读者。

4、目的明确在选择图表之前,明确你的目的和受众。不同的图表类型适用于不同的目的和受众,因此需要根据实际情况进行选择。

5、可视化图表分类

类型用途图形
对比类图形主要用于展示不同类别或组之间的数据对比关系柱形图、条形图、子弹图、雷达图、词云图、哑铃图、棒棒糖图等
趋势类图形用于展示数据随时间或其他变量的变化趋势折线图、范围面积图、面积图、散点图、瀑布图等
分布类图形主要用于展示数据的分布情况散点图、地图、热力区域图、漏斗图、直方图、核密度图等
关系类图形用于展示两个或多个变量之间的关系散点图、气泡图、流程图、甘特图、组织结构图、矩阵图等
占比类图形主要用于展示数据的占比或比例关系饼图、环形图、玫瑰图、百分比堆积柱形图、百分比堆积条形图、树百分比瀑布图、堆叠柱状图、旭日图、漏斗图等
地理类图形用于展示地理数据或空间分布的数据常见的地理类图形包括地图、热力图、点密度图等

三、python可视化包及其优缺点

名称介绍优点缺点适用场景
MatplotlibMatplotlib 是 Python 中最常用的 2D 绘图库,提供了各种绘图工具,如线图、柱状图、散点图、饼图等广泛支持:适用于多种操作系统和平台。
高度可定制:可以精细控制图表的每一个细节。
集成性:与其他 Python 库(如 NumPy、Pandas)集成良好。
复杂度高:相对于其他库,API 可能较为繁琐。
静态图表:主要侧重于静态图表,交互性较弱。
适用于需要高度定制和精细控制图表的场景,如科学研究、数据报告等
SeabornSeaborn 是基于 Matplotlib 的一个统计图形库,专注于绘制具有吸引力的统计图形美观:内置了多种预定义的主题和样式,使得图表更美观。
统计导向:专注于统计图形,适合数据分析和探索。
易用性:API 相对简单,易于上手。
交互性弱:和 Matplotlib 一样,Seaborn 主要侧重于静态图表。
定制性差:虽然美观,但在定制方面可能不如 Matplotlib 灵活。
适用于数据分析、数据探索和可视化报告,特别是需要美观和统计导向的图表
PlotlyPlotly 是一个交互式绘图库,支持创建各种动态和交互式的图表交互性:提供了丰富的交互功能,如缩放、平移、悬停提示等。
多平台支持:支持 Web、桌面和 Jupyter Notebook 等多种平台。
图表类型多样:支持多种图表类型,如散点图、热图、3D 图等。
学习曲线:API 可能较为复杂,需要一些时间来适应。
性能:在处理大量数据时,性能可能不如其他库。
适用于需要创建交互式图表的场景,如 Web 应用、数据仪表板等
PyechartsPyecharts 是一个用于生成 Echarts 图表的 Python 库。Echarts 是一个使用 JavaScript 编写的开源可视化库,Pyecharts 提供了 Python 接口美观:Echarts 的图表美观且高度可定制。
交互性:支持丰富的交互功能,如数据缩放、数据过滤等。
集成性:可以轻松地将图表嵌入到 Web 应用中
依赖 JavaScript:图表是在客户端渲染的,需要用户的浏览器支持 JavaScript。
文档和学习资源:相对于其他 Python 可视化库,文档和学习资源可能较少。
适用于需要创建美观且交互性强的 Web 图表的场景,如数据仪表板、Web 应用等

四、常见图表样式

1.1、条形图

在这里插入图片描述

1.2、堆叠条形图

在这里插入图片描述

1.3、百分百堆叠条形图

在这里插入图片描述

2、直方图

在这里插入图片描述

3、折线图

在这里插入图片描述

4、面积图

在这里插入图片描述

5、饼图

在这里插入图片描述

6、环形图

在这里插入图片描述

7、玫瑰图

在这里插入图片描述

8、热力图

在这里插入图片描述

9、雷达图

在这里插入图片描述

10、桑葚图

在这里插入图片描述

11、词云图

在这里插入图片描述

12、地图

在这里插入图片描述

13、仪表盘

在这里插入图片描述

14、水球图

在这里插入图片描述

15、箱型图

在这里插入图片描述

16、K线图

在这里插入图片描述

这篇关于【四 (1)数据可视化之如何选用正确的图表】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/816413

相关文章

基于Python打造一个可视化FTP服务器

《基于Python打造一个可视化FTP服务器》在日常办公和团队协作中,文件共享是一个不可或缺的需求,所以本文将使用Python+Tkinter+pyftpdlib开发一款可视化FTP服务器,有需要的小... 目录1. 概述2. 功能介绍3. 如何使用4. 代码解析5. 运行效果6.相关源码7. 总结与展望1

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解