基于51单片机的数字华氏温度计报警(源码+仿真+全套资料)

2024-03-16 11:59

本文主要是介绍基于51单片机的数字华氏温度计报警(源码+仿真+全套资料),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

资料编号:114

采用51单片机采集DS18B20的温度,LCD1602显示,并且可以设置上下限值,超过对应的值LED会有提醒,并且可以通过按键进行华氏温度转换显示,全套资料齐全:具体功能请看下方演示视频

114-基于51单片机的数字华氏温度计报警(源码+仿真+全套资料)

单片机最小系统介绍
单片机(Microcontrollers)是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计数器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统,在工业控制领域广泛应用。从上世纪80年代,由当时的4位、8位单片机,发展到现在的300M的高速单片机。本文的单片机特指51单片机,具体芯片型号是 AT89C52。需注意STC89C51,STC89C52,AT89C51,AT89C52都是51单片机的一种具体芯片型号。

最小系统组成:

51单片机最小系统:单片机、复位电路、晶振(时钟)电路、电源

最小系统用到的引脚

1、主电源引脚(2根)

VCC:电源输入,接+5V电源

GND:接地线

2、外接晶振引脚(2根)

XTAL1:片内振荡电路的输入端

XTAL2:片内振荡电路的输出端

3、控制引脚(4根)

RST/VPP:复位引脚,引脚上

复位电路
一般来说,在电路图中,电容的的大小是10uf,电阻的大小是10k。(不特指本电路,具体参数看仿真图)

在5V正常工作的51单片机中小于1.5V的电压信号为低电平信号,而大于1.5V的电压信号为高电平信号。可以算出电容充电到电源电压的0.7倍,即电容两端电压为3.5V、电阻两端电压为1.5V时,需要的时间约为T=RC=10K*10UF=0.1S。

也就是说在单片机上电启动的0.1S内,电容两端的电压从0-3.5V不断增加,这个时候10K电阻两端的电压为从5-1.5V不断减少(串联电路各处电压之和为总电压),所以RST引脚所接收到的电压是5V-1.5V的过程,也就是高电平到低电平的过程。

单片机RST引脚是高电平有效,即复位;低电平无效,即单片机正常工作。所以在开机0.1S内,单片机系统RST引脚接收到了时间为0.1S左右的高电平信号,所以实现了自动复位。

在单片机启动0.1S后,电容C两端的电压持续充电为5V,这是时候10K电阻两端的电压接近于0V,RST处于低电平所以系统正常工作。当按键按下的时候,开关导通,这个时候电容两端形成了一个回路,电容被短路,所以在按键按下的这个过程中,电容开始释放之前充的电量。随着时间的推移,电容的电压在0.1S内,从5V释放到变为了1.5V,甚至更小。根据串联电路电压为各处之和,这个时候10K电阻两端的电压为3.5V,甚至更大,所以RST引脚又接收到高电平。单片机系统自动复位。

晶振电路
晶振基本概念 晶振全名叫晶体振荡器,每个单片机系统里都有晶振,晶振是由石英晶体经过加工并镀上电极而做成的,主要的特性就是通电后会产生机械震荡,可以给单片机提供稳定的时钟源,晶振提供时钟频率越高,单片机的运行速度也就越快。 晶振用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。

晶振起振后, 产生的振动信号会通过XTAL1引脚, 依次经过振荡器和时钟发生器的处理,得到机器周期信号,作为指令操作的依据。51单片机常用的晶振是12M和11.0592M

#include<reg52.h>                        //包含reg52.h库文件
#include<math.h>                        //包含绝对值函数
#define uint unsigned int                //宏定义uint
#define uchar unsigned char                //宏定义uchar
sbit lcden=P2^0;                        //液晶使能端
sbit lcdrw=P2^1;
sbit lcdrs=P2^2;                        //液晶数据命令选择端选择写数据还是写命令
sbit DQ = P2^3;                         //通过DQ口读取温度值
sbit s1=P1^2;                            //选择按键
sbit s2=P1^7;                            //加按键
sbit s3=P3^3;                            //减按键
sbit D1=P3^4;             //高温报警灯
sbit D2=P1^3;             //低温报警灯
uchar temp_value,num,fig,s1num,figh,figl,t;  //设置全局无符号字符型变量
char h,l;                                //设置全局有符号字符型变量
void delay(uint z);                        //申明延时程序
void init();                            //申明LCD初始化程序
void write_com(uchar com);                //申明写命令程序
void write_data(uchar date);            //申明写数据程序
void keyscan();                            //申明按键扫描程序
void write_hl(uchar add,char date);        //申明设置的最高低温度值在LCD上显示程序
void write_temp_value(uchar add,char date);    //申明温度值在LCD上显示程序
void delay_18B20(unsigned int i);        //申明延时程序
void Init_DS18B20(void);                //申明DS18B20初始化程序
unsigned char ReadOneChar(void);        //申明ds18b20读一个字节
void WriteOneChar(uchar dat);            //申明ds18b20读一个字节
void ReadTemp(void);                    //申明读取ds18b20当前温度
void comp();
void main()
{
    init();                                //LCD初始化
    Init_DS18B20();                        //DS18B20初始化
    while(1)                            //大循环
    { if(s1==0||s1num>=1)
        {    keyscan();                    //按键扫描
        }
    else{    ReadTemp();                    //读取温度值
            write_temp_value(0,temp_value);    //LCD显示温度值
        }
        comp();        
    }

 资料下载链接icon-default.png?t=M85Bhttps://pan.baidu.com/s/1jMpfjrZYIpQ7JkwJfrkVhg?pwd=vtx7

这篇关于基于51单片机的数字华氏温度计报警(源码+仿真+全套资料)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/815430

相关文章

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

java字符串数字补齐位数详解

《java字符串数字补齐位数详解》:本文主要介绍java字符串数字补齐位数,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java字符串数字补齐位数一、使用String.format()方法二、Apache Commons Lang库方法三、Java 11+的St

Spring 中 BeanFactoryPostProcessor 的作用和示例源码分析

《Spring中BeanFactoryPostProcessor的作用和示例源码分析》Spring的BeanFactoryPostProcessor是容器初始化的扩展接口,允许在Bean实例化前... 目录一、概览1. 核心定位2. 核心功能详解3. 关键特性二、Spring 内置的 BeanFactory

Java数字转换工具类NumberUtil的使用

《Java数字转换工具类NumberUtil的使用》NumberUtil是一个功能强大的Java工具类,用于处理数字的各种操作,包括数值运算、格式化、随机数生成和数值判断,下面就来介绍一下Number... 目录一、NumberUtil类概述二、主要功能介绍1. 数值运算2. 格式化3. 数值判断4. 随机

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听