数字多空策略(实盘+回测+数据)

2024-03-16 10:44

本文主要是介绍数字多空策略(实盘+回测+数据),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

数量技术宅团队在CSDN学院推出了量化投资系列课程

欢迎有兴趣系统学习量化投资的同学,点击下方链接报名:

量化投资速成营(入门课程)

Python股票量化投资

Python期货量化投资

Python数字货币量化投资

C++语言CTP期货交易系统开发

数字货币JavaScript语言量化交易系统开发


技术宅此前分享的数字策略多为单边策略。单边策略最大的特征是在承担一定的波动风险前提下获取高收益率。而对于许多稳健的、中、低风险偏好的投资者来说,在承担尽可能小的波动风险前提下,获取尽可能高的收益率,是他们追求的目标。

本期,我们将推出一期同时兼顾低风险和高收益的优质策略:数字货币多空策略。策略不受整个数字货币市场涨跌的影响、回撤小同时长期运行也有极高的收益率,让我们一起来看看吧!

策略逻辑

首先,我们简要介绍“数字货币多空策略”的策略逻辑:

随着交易所挂牌交易的合约数量不断增加,同时合约相互间相关性不断降低,有更多的币种不与BTC、ETH等主流币同涨同跌,呈现涨跌分化的状态,因此每天都有不同币种的做多、做空机会。下图是我们随机选取某天币安所有U本位合约的涨跌幅排序,可以看出币种涨跌分化很明显,涨幅排名第一的ICPUSDT和跌幅排名第一的BSVUSDT的24h涨跌幅差距超过40%,而涨幅排名前5名币种的24h涨跌幅差距也超过20%,多空分化产生的交易机会很多、价差收益也很可观。

那么,问题的关键就在如何有效筛选出多空分化的币种,从而实现合约的价差收益。我们通过全量历史数据+海量因子筛选测试,最终确定了三个最有效的信号因子,以及之对应的三个多空策略,每个多空策略的多空币种市值相当,实现了方向上的完全对冲,不受整个数字货币市场涨跌的影响,能够在低风险的前提下,有效赚取币种间的相对强弱收益

三个策略的目标执行周期不同,因此在捕捉行情的时间维度上也有一定的分散度。三策略既可以单策略独立运行,也可以三策略组合运行。组合运行的策略收益更稳定、回撤更小

回测绩效

三策略通用测试参数:测试周期从2020-1-1测试到2023年末共计4年时间;交易成本按照单次多空交易千分之二扣除(足够覆盖交易手续费与盘口价差成本);测试杠杆采用2倍杠杆;单利测试。

我们先分别看三策略单策略绩效:

策略一:累积收益率超过17.5倍,年化收益率超过437.5%,单次多空交易利润3.7%,最大回撤率<20%。

策略二:累积收益率同样超过17.5倍,年化收益率超过437.5%,单次多空交易利润2.6%,最大回撤率<25%

策略三:累积收益率超过16倍,年化收益率超过400%,单次多空交易利润1.4%,最大回撤率<15%

再来看组合绩效,组合绩效是同时运行三个多空策略所产生的效果,组合策略累积收益率同样超过17.5倍,年化收益率超过437.5%,单次多空交易利润2.5%,最大回撤率<15%。可以看出,组合策略在实现不低于单策略收益率的同时,最大回撤率更低,运行也更稳健,真正创造了低风险、高收益的特征

通过历史测试可以看到,多空策略在低风险的环境下,在2倍杠杆的条件下,实现了年均超4倍的利润,其盈利能力完全不低于目前市场中的大多数单边策略

实盘业绩

我们根据回测确定的最佳三策略组合,并编写了实盘交易系统。并在测试账户进行为期两个半月多的实盘交易(同样采用2倍杠杆),累积产生了超过150%的收益率!(ps:尽管BTC处于大牛市,策略仍大幅跑赢BTC涨幅),实盘业绩曲线如下。

附上部分随机截取实盘交易记录

至此,数字多空策略通过实盘业绩验证。

这篇关于数字多空策略(实盘+回测+数据)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/815230

相关文章

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案... 目录一、requests 库二、aiohttp 库三、requests 和 aiohttp 的比较四、requ

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略