g729源码分析-2-共振锋感知加权

2024-03-16 00:58

本文主要是介绍g729源码分析-2-共振锋感知加权,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

不同于g723固定系数的共振峰感知加权
g729的共振峰感知加权是自适应的.


perc_var 这个函数来对共振峰感加权进行估值


我们先看itu的文档 3.3节 的式30,
这是一个判断语音频谱是否平坦的一个条件.
因为人类语音的频谱有个特点,越高频的共振峰的能量会越弱.
而共振峰感知加权要注意这个现象,如果频谱倾斜了(高频共振峰能量弱),要加强加权系数


根据莱文森德宾递推公式:
k1=-R(1)/R(0)
k2 = (1-R(2)/R(0)) / (1-k1^2)


从itu的文档看出,对数面积比,实际上是反k1 与 k2扩展到 负无穷到正无穷上了


也就是对数面积比趋向于负无穷的时候,此时对应的 R(1)/R(0)是接近于 1的, 正无穷时 R(1)/R(0)是-1
即对数面积比系数越小,可以估计出高频分量越低, 对数面积比系数越大,高频分量就越高.


当条件1满足时,我们其实可以计算出 k1差不多为 -55/56 即 R(1)/R(0) = 55/56 即高频分量低
R(2)/R(0)其实对应着次高频分量,再来看k2,R(2)/R(0)大概可以由k2的取值推断出 R(2)/R(0)也是一个非常接近1的值,
即,次高频分量还是低的.(此时k2大约为3/5,由于分母极小,所以分子也不可能太大,推断于R(2)/R(0)是接近于1的值)


结合前一帧是平的,由于高频分量都低了,就可以推断出当前帧应该是倾斜了


同理可以推断于条件2是一个相反的过程,由倾斜,而高频分量高了,认为当前帧的频谱是平坦的
注:人类语音能量集中在前两个共振峰,后面的共振峰能量会依次降低,共振峰对听觉心理的影响最大,
所以感知加权要加强共振峰的强度与带宽
引入的感知加权.
我们可以因式分解成:


          1
 -----------------------------------------------------------------------
 (z^-1 + r*cos(b1) + i*r*sin(b1)) ... (z^-1 + r*cos(b10) + i*r*sin(b10))
我们将 z=(z/a)  0<a<1代入,看其中的一个因子
             1
  ------------------------------------
  ((z/a)^-1 + r*cos(b1) + i*r*sin(b1))
  
可化为
            1/a
 ------------------------------------------
   (z^-1 + (r/a)*cos(b1) + i*(r/a)*sin(b1))
将 z = e^jw代入,则整个分式的绝对值(对应频域的振幅)
             1/a
 ----------------------------
  1+(r/a)^2+ 2*(r/a)cos(w+b1)
我们画一下这个函数的图,观察a变化,引起的幅度变化,自然能得出a越小,共振峰带宽扩展,共振峰加强的结论,b1则表示共振峰的位置
对比723,729引入了感知加权自适应机制,即,两个共振峰的位置如果太接近了,带宽扩展有可能导致两个共振峰出现重合了
也就是最近的两个共振峰越接近,则带宽扩展的加权越低(即a越大)


以上就是分析出来的共振峰加权系数取值的一些推导依据,代码就相应简单了,基本上照本宣科
最终求得两个共振峰感知加权系数


得到加权系数后,对信号进行滤波,比较简单,不详述了
//lsc 处理两个子帧,分别对它们进行感知加权滤波
  Weight_Az(&A_t[0], gamma1[0], M, Ap1);
  Weight_Az(&A_t[0], gamma2[0], M, Ap2);
  Residu(Ap1, &speech[0], &wsp[0], L_SUBFR);//lsc 对应加权滤波器分子的滤波
  Syn_filt(Ap2, &wsp[0], &wsp[0], L_SUBFR, mem_w, 1);//对应加权滤波器分母的滤波


  Weight_Az(&A_t[MP1], gamma1[1], M, Ap1);
  Weight_Az(&A_t[MP1], gamma2[1], M, Ap2);
  Residu(Ap1, &speech[L_SUBFR], &wsp[L_SUBFR], L_SUBFR);//lsc 对应分子的

  Syn_filt(Ap2, &wsp[L_SUBFR], &wsp[L_SUBFR], L_SUBFR, mem_w, 1);//lsc 对应分子的

这篇关于g729源码分析-2-共振锋感知加权的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/813824

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专