Python实战 | “端午节” 送亲戚,送长辈,粽子可视化大屏来帮忙!

2024-03-15 23:30

本文主要是介绍Python实战 | “端午节” 送亲戚,送长辈,粽子可视化大屏来帮忙!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

公众号:「杰哥的IT之旅」,后台回复:「粽子」即可获取本文完整数据

本文简介

今年,我用 Python 爬取了京东上面的 “粽子数据” 进行分析,看看有啥发现吧!

本文就从数据爬取数据清洗数据可视化,这三个方面入手,但你简单完成一个小型的数据分析项目,让你对知识能够有一个综合的运用。

整个思路如下:
  • 爬取网页: https://www.jd.com/
  • 爬取说明: 基于京东网站,我们搜索网站“粽子”数据,大概有100页。我们爬取的字段,既有一级页面的相关信息,还有二级页面的部分信息;
  • 爬取思路: 先针对某一页数据的一级页面做一个解析,然后再进行二级页面做一个解析,最后再进行翻页操作;
  • 爬取字段: 分别是粽子的名称(标题)、价格、品牌(店铺)、类别(口味);
  • 使用工具: requests+lxml+pandas+time+re+pyecharts
  • 网站解析方式: xpath
最终的效果如下:

图片

数据爬取

京东网站,一般是动态加载的,也就是说,采用一般方式只能爬取到某个页面的前30个数据(一个页面一共60个数据)。

基于本文,我仅用最基本的方法,爬取了每个页面的前30条数据(如果大家有兴趣,可以自行下去爬取所有的数据)。

那么,本文究竟爬取了哪些字段呢?我给大家做一个展示,大家有兴趣,可以爬取更多的字段,做更为详细的分析。

图片

下面为大家展示爬虫代码:

import pandas as pd
import requests
from lxml import etree
import chardet
import time
import redef get_CI(url):headers = {'User-Agent':'Mozilla/5.0 (Windows NT 6.1; Win64; X64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.80 Safari/537.36'}rqg = requests.get(url,headers=headers)rqg.encoding = chardet.detect(rqg.content)['encoding']html = etree.HTML(rqg.text)# 价格p_price = html.xpath('//div/div[@class="p-price"]/strong/i/text()')# 名称p_name = html.xpath('//div/div[@class="p-name p-name-type-2"]/a/em')p_name = [str(p_name[i].xpath('string(.)')) for i in range(len(p_name))]# 深层urldeep_ur1 = html.xpath('//div/div[@class="p-name p-name-type-2"]/a/@href')deep_url = ["http:" + i for i in deep_ur1]# 从这里开始,我们获取“二级页面”的信息           brands_list = []kinds_list = []for i in deep_url:rqg = requests.get(i,headers=headers)rqg.encoding = chardet.detect(rqg.content)['encoding']html = etree.HTML(rqg.text)# 品牌brands = html.xpath('//div/div[@class="ETab"]//ul[@id="parameter-brand"]/li/@title')brands_list.append(brands)# 类别kinds = re.findall('>类别:(.*?)</li>',rqg.text)kinds_list.append(kinds)data = pd.DataFrame({'名称':p_name,'价格':p_price,'品牌':brands_list,'类别':kinds_list})return(data)x = "https://search.jd.com/Search?keyword=%E7%B2%BD%E5%AD%90&qrst=1&wq=%E7%B2%BD%E5%AD%90&stock=1&page="
url_list = [x + str(i) for i in range(1,200,2)] 
res = pd.DataFrame(columns=['名称','价格','品牌','类别'])# 这里进行“翻页”操作
for url in url_list:res0 = get_CI(url)res = pd.concat([res,res0])time.sleep(3)# 保存数据
res.to_csv('aliang.csv',encoding='utf_8_sig')
最终爬取到的数据:

图片

数据清洗

从上图可以看到,整个数据算是很整齐的,不是特别乱,我们只做一些简单的操作即可。

先使用pandas库,来读取数据。

import pandas as pddf = pd.read_excel("粽子.xlsx",index_col=False)
df.head()

结果如下:

图片

我们分别针对 “品牌”“类别”**** 两个字段,去掉中括号。

df["品牌"] = df["品牌"].apply(lambda x: x[1:-1])
df["类别"] = df["类别"].apply(lambda x: x[1:-1])
df.head()

结果如下:

图片

粽子品牌排名前10的店铺
df["品牌"].value_counts()[:10]

结果如下:

图片

粽子口味排名前5的味道
def func1(x):if x.find("甜") > 0:return "甜粽子"else:return x
df["类别"] = df["类别"].apply(func1)
df["类别"].value_counts()[1:6] 

结果如下:

图片

粽子售卖价格区间划分
def price_range(x): # 按照我的购物习惯,划分价格if x <= 50:return '<50元'elif x <= 100:return '50-100元'elif x <= 300:return '100-300元'elif x <= 500:return '300-500元'elif x <= 1000:return '500-1000元'else:return '>1000元'df["价格区间"] = df["价格"].apply(price_range)
df["价格区间"].value_counts()

结果如下:

图片

由于数据不是很多,没有很多字段,也就没有很多乱数据。因此,这里也没有做数据去重、缺失值填充等操作。所以,大家可以下去获取更多字段,更多数据,用于数据分析。

数据可视化

俗话说:字不如表,表不如图。通过可视化分析,我们可以将数据背后 “隐藏” 的信息,给展现出来。

拓展: 当然,这里只是 “抛砖引玉”,我并没有获取太多的数据,也没有获取太多的字段。这里给学习的朋友当一个作业题,自己下去用更多的数据、更多的字段,做更透彻的分析。

在这里,我们基于以下几个问题,做一个可视化展示,分别是:

  • 粽子销售店铺Top10柱形图;
  • 粽子口味排名Top5柱形图;
  • 粽子销售价格区间划分饼图;
  • 粽子商品名称词云图;

鉴于整个文章排版,本文可视化部分的代码均可在本文末尾获取。

粽子销售店铺Top10柱形图

图片

结论分析: 去年,我们分析了一些月饼的数据,“五芳斋”“北京稻香村” 这几个牌子记忆犹新,可谓是做月饼、粽子的老店。像 “三全”“思念”,在我印象中一直以为它们只做水饺和汤圆,粽子是否值得一试呢?当然,这里还有一些新的牌子,像 “诸老大”“稻香私房” 等一些牌子,大家都可以下去搜索一下。买东西,就是要精挑细选,品牌也重要。

粽子口味排名Top5柱形图

图片

结论分析: 在我印象中,小时候一直吃的最多的就是 “甜粽子”,直到我上了初中才知道,粽子还可以有肉?当然,从图中可以看出,卖 “鲜肉粽” 的店铺还是居多,毕竟这个送人,还是显得高端、大气一些。这里还有一些口味,像 “蜜枣粽”“豆沙粽”,我基本没吃过。如果你送人,你会送什么口味的呢?

粽子销售价格区间划分饼图

图片

结论分析: 这里,我故意把价格区间细分。这个饼图也很符合实际,毕竟每年就过一次端午节,还是以薄利多销为主,接近80%的粽子,售价都在100元以下。当然,还有一些中档的粽子,价格在100-300元。大于300元,我觉得也没有吃的必要,反正我是不会花这么多钱去买粽子。

粽子商品名称词云图

图片

结论分析: 从图中,可以大致看出商家的卖点了。毕竟是节日,“送礼”“礼品” 体现了节日氛围。“猪肉”“豆沙” 体现了粽子口味。当然,它是否是 “早餐” 好选择呢?购买的话,还支持 “团购” 哦。这些字眼,多多少少都会各自吸引一部分人的眼球。

图形组合为大屏

图片

本文的可视化采用的pyecharts库,进行绘制。我们先单独做好每一张图,然后进行图形整合,即可做出一张漂亮的可视化大屏。关于如何制作,可以文末获取我的源代码文件!【粽子.ipynb】

图片

推荐阅读

我去,原来 520 情人节大家都在买这款口红!

利用 Python 爬取了 13966 条运维招聘信息,我得出了哪些结论?

利用 Python 爬取了 37483 条上海二手房信息,我得出的结论是?

利用 Python 分析了某化妆品企业的销售情况,我得出的结论是?

我用 Python 分析了一波热卖年货,原来大家都在买这些东西?

原文链接:Python实战 | “端午节” 送亲戚,送长辈,粽子可视化大屏来帮忙!


原创不易,码字不易。 觉得这篇文章对你有点用的话,麻烦你为本文点个赞,留言或转发一下,因为这将是我输出更多优质文章的动力,感谢!

⬇⬇⬇⬇⬇⬇⬇⬇

这篇关于Python实战 | “端午节” 送亲戚,送长辈,粽子可视化大屏来帮忙!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/813606

相关文章

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方