Python实战 | “端午节” 送亲戚,送长辈,粽子可视化大屏来帮忙!

2024-03-15 23:30

本文主要是介绍Python实战 | “端午节” 送亲戚,送长辈,粽子可视化大屏来帮忙!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

公众号:「杰哥的IT之旅」,后台回复:「粽子」即可获取本文完整数据

本文简介

今年,我用 Python 爬取了京东上面的 “粽子数据” 进行分析,看看有啥发现吧!

本文就从数据爬取数据清洗数据可视化,这三个方面入手,但你简单完成一个小型的数据分析项目,让你对知识能够有一个综合的运用。

整个思路如下:
  • 爬取网页: https://www.jd.com/
  • 爬取说明: 基于京东网站,我们搜索网站“粽子”数据,大概有100页。我们爬取的字段,既有一级页面的相关信息,还有二级页面的部分信息;
  • 爬取思路: 先针对某一页数据的一级页面做一个解析,然后再进行二级页面做一个解析,最后再进行翻页操作;
  • 爬取字段: 分别是粽子的名称(标题)、价格、品牌(店铺)、类别(口味);
  • 使用工具: requests+lxml+pandas+time+re+pyecharts
  • 网站解析方式: xpath
最终的效果如下:

图片

数据爬取

京东网站,一般是动态加载的,也就是说,采用一般方式只能爬取到某个页面的前30个数据(一个页面一共60个数据)。

基于本文,我仅用最基本的方法,爬取了每个页面的前30条数据(如果大家有兴趣,可以自行下去爬取所有的数据)。

那么,本文究竟爬取了哪些字段呢?我给大家做一个展示,大家有兴趣,可以爬取更多的字段,做更为详细的分析。

图片

下面为大家展示爬虫代码:

import pandas as pd
import requests
from lxml import etree
import chardet
import time
import redef get_CI(url):headers = {'User-Agent':'Mozilla/5.0 (Windows NT 6.1; Win64; X64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.80 Safari/537.36'}rqg = requests.get(url,headers=headers)rqg.encoding = chardet.detect(rqg.content)['encoding']html = etree.HTML(rqg.text)# 价格p_price = html.xpath('//div/div[@class="p-price"]/strong/i/text()')# 名称p_name = html.xpath('//div/div[@class="p-name p-name-type-2"]/a/em')p_name = [str(p_name[i].xpath('string(.)')) for i in range(len(p_name))]# 深层urldeep_ur1 = html.xpath('//div/div[@class="p-name p-name-type-2"]/a/@href')deep_url = ["http:" + i for i in deep_ur1]# 从这里开始,我们获取“二级页面”的信息           brands_list = []kinds_list = []for i in deep_url:rqg = requests.get(i,headers=headers)rqg.encoding = chardet.detect(rqg.content)['encoding']html = etree.HTML(rqg.text)# 品牌brands = html.xpath('//div/div[@class="ETab"]//ul[@id="parameter-brand"]/li/@title')brands_list.append(brands)# 类别kinds = re.findall('>类别:(.*?)</li>',rqg.text)kinds_list.append(kinds)data = pd.DataFrame({'名称':p_name,'价格':p_price,'品牌':brands_list,'类别':kinds_list})return(data)x = "https://search.jd.com/Search?keyword=%E7%B2%BD%E5%AD%90&qrst=1&wq=%E7%B2%BD%E5%AD%90&stock=1&page="
url_list = [x + str(i) for i in range(1,200,2)] 
res = pd.DataFrame(columns=['名称','价格','品牌','类别'])# 这里进行“翻页”操作
for url in url_list:res0 = get_CI(url)res = pd.concat([res,res0])time.sleep(3)# 保存数据
res.to_csv('aliang.csv',encoding='utf_8_sig')
最终爬取到的数据:

图片

数据清洗

从上图可以看到,整个数据算是很整齐的,不是特别乱,我们只做一些简单的操作即可。

先使用pandas库,来读取数据。

import pandas as pddf = pd.read_excel("粽子.xlsx",index_col=False)
df.head()

结果如下:

图片

我们分别针对 “品牌”“类别”**** 两个字段,去掉中括号。

df["品牌"] = df["品牌"].apply(lambda x: x[1:-1])
df["类别"] = df["类别"].apply(lambda x: x[1:-1])
df.head()

结果如下:

图片

粽子品牌排名前10的店铺
df["品牌"].value_counts()[:10]

结果如下:

图片

粽子口味排名前5的味道
def func1(x):if x.find("甜") > 0:return "甜粽子"else:return x
df["类别"] = df["类别"].apply(func1)
df["类别"].value_counts()[1:6] 

结果如下:

图片

粽子售卖价格区间划分
def price_range(x): # 按照我的购物习惯,划分价格if x <= 50:return '<50元'elif x <= 100:return '50-100元'elif x <= 300:return '100-300元'elif x <= 500:return '300-500元'elif x <= 1000:return '500-1000元'else:return '>1000元'df["价格区间"] = df["价格"].apply(price_range)
df["价格区间"].value_counts()

结果如下:

图片

由于数据不是很多,没有很多字段,也就没有很多乱数据。因此,这里也没有做数据去重、缺失值填充等操作。所以,大家可以下去获取更多字段,更多数据,用于数据分析。

数据可视化

俗话说:字不如表,表不如图。通过可视化分析,我们可以将数据背后 “隐藏” 的信息,给展现出来。

拓展: 当然,这里只是 “抛砖引玉”,我并没有获取太多的数据,也没有获取太多的字段。这里给学习的朋友当一个作业题,自己下去用更多的数据、更多的字段,做更透彻的分析。

在这里,我们基于以下几个问题,做一个可视化展示,分别是:

  • 粽子销售店铺Top10柱形图;
  • 粽子口味排名Top5柱形图;
  • 粽子销售价格区间划分饼图;
  • 粽子商品名称词云图;

鉴于整个文章排版,本文可视化部分的代码均可在本文末尾获取。

粽子销售店铺Top10柱形图

图片

结论分析: 去年,我们分析了一些月饼的数据,“五芳斋”“北京稻香村” 这几个牌子记忆犹新,可谓是做月饼、粽子的老店。像 “三全”“思念”,在我印象中一直以为它们只做水饺和汤圆,粽子是否值得一试呢?当然,这里还有一些新的牌子,像 “诸老大”“稻香私房” 等一些牌子,大家都可以下去搜索一下。买东西,就是要精挑细选,品牌也重要。

粽子口味排名Top5柱形图

图片

结论分析: 在我印象中,小时候一直吃的最多的就是 “甜粽子”,直到我上了初中才知道,粽子还可以有肉?当然,从图中可以看出,卖 “鲜肉粽” 的店铺还是居多,毕竟这个送人,还是显得高端、大气一些。这里还有一些口味,像 “蜜枣粽”“豆沙粽”,我基本没吃过。如果你送人,你会送什么口味的呢?

粽子销售价格区间划分饼图

图片

结论分析: 这里,我故意把价格区间细分。这个饼图也很符合实际,毕竟每年就过一次端午节,还是以薄利多销为主,接近80%的粽子,售价都在100元以下。当然,还有一些中档的粽子,价格在100-300元。大于300元,我觉得也没有吃的必要,反正我是不会花这么多钱去买粽子。

粽子商品名称词云图

图片

结论分析: 从图中,可以大致看出商家的卖点了。毕竟是节日,“送礼”“礼品” 体现了节日氛围。“猪肉”“豆沙” 体现了粽子口味。当然,它是否是 “早餐” 好选择呢?购买的话,还支持 “团购” 哦。这些字眼,多多少少都会各自吸引一部分人的眼球。

图形组合为大屏

图片

本文的可视化采用的pyecharts库,进行绘制。我们先单独做好每一张图,然后进行图形整合,即可做出一张漂亮的可视化大屏。关于如何制作,可以文末获取我的源代码文件!【粽子.ipynb】

图片

推荐阅读

我去,原来 520 情人节大家都在买这款口红!

利用 Python 爬取了 13966 条运维招聘信息,我得出了哪些结论?

利用 Python 爬取了 37483 条上海二手房信息,我得出的结论是?

利用 Python 分析了某化妆品企业的销售情况,我得出的结论是?

我用 Python 分析了一波热卖年货,原来大家都在买这些东西?

原文链接:Python实战 | “端午节” 送亲戚,送长辈,粽子可视化大屏来帮忙!


原创不易,码字不易。 觉得这篇文章对你有点用的话,麻烦你为本文点个赞,留言或转发一下,因为这将是我输出更多优质文章的动力,感谢!

⬇⬇⬇⬇⬇⬇⬇⬇

这篇关于Python实战 | “端午节” 送亲戚,送长辈,粽子可视化大屏来帮忙!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/813606

相关文章

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文