周志华《机器学习》习题6.2——使用LIBSVM比较线性核和高斯核的差别

本文主要是介绍周志华《机器学习》习题6.2——使用LIBSVM比较线性核和高斯核的差别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.题目

试使用LIBSVM,在西瓜数据集3.0α上分别用线性核和高斯核训练一个SVM,并比较其支持向量的差别。

西瓜数据集3.0α如下图:
在这里插入图片描述

2.LIBSVM

libsvm是目前比较著名的SVM软件包,由台湾大学林智仁(Chih-Jen Lin)教授等开发,它可以帮助程序员轻松的实现SVM二分类、多分类或者SVR等任务。
LIBSVM官网:https://www.csie.ntu.edu.tw/~cjlin/libsvm/
在这里插入图片描述

可以根据官网新手引导进行下载和配置,这里就直接使用anaconda进行安装了。
在anaconda控制台中输入

pip install libsvm

即可安装。

3. 代码实现

因为我过去下载的数据集是xlsx格式,所以这里需要将表格数据转成libsvm要求的数据格式。当然,下面我将转换完的数据放进来了,如果需要可以直接复制粘贴。
libsvm要求数据集为以下格式:数据集包含若干行,每行对应一个样例,对于每个样例有以下格式:

[类别] [属性编号1]:[属性值1] [属性编号2]:[属性值2] …

以本题的西瓜数据为例子,转换完就是这样:

1 1:0.697 2:0.46
1 1:0.774 2:0.376
1 1:0.634 2:0.264
1 1:0.608 2:0.318
1 1:0.556 2:0.215
1 1:0.403 2:0.237
1 1:0.481 2:0.149
1 1:0.437 2:0.211
0 1:0.666 2:0.091
0 1:0.243 2:0.267
0 1:0.245 2:0.057
0 1:0.343 2:0.099
0 1:0.639 2:0.161
0 1:0.657 2:0.198
0 1:0.36 2:0.37
0 1:0.593 2:0.042
0 1:0.719 2:0.103

对于第一行: ”1 1:0.697 2:0.46“
从左到右数字依次的含义是,“1” 表示第1个类别,“1:0.697” 表示第一个属性取值0.697,“2:0.46” 表示第二个属性取值0.46。
然后,将上述格式的数据存在一个.scale或者.txt文件,就可作为libsvm的训练数据,留给后续步骤使用。

from libsvm.svm import *
from libsvm.svmutil import *
import openpyxl
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as npdef xl_to_scale_file():workbook = openpyxl.load_workbook("../第三章_线性模型/xigua3.0.xlsx")sheet1 = workbook['Sheet1']with open("./xigua.scale", 'w') as f:i = 0data_class = sheet1[3][i]for i in range(sheet1.max_column):data_class = sheet1[3][i]atr_1 = sheet1[1][i]atr_2 = sheet1[2][i]line = str(data_class.value) + " 1:" + str(atr_1.value) + " 2:" + str(atr_2.value)f.writelines(line + "\n")

然后,就可以调用libsvm了。
首先使用 svm_read_problem() 将训练集读入进来:

train_label, train_value = svm_read_problem("./xigua.scale")

然后,调用svm_train()训练svm,第一个参数为训练标签,第二个数据为训练样本,第三个数据为字符串,用来指定svm的参数,其可以指定的参数完整版说明如下:

options:
-s svm_type : set type of SVM (default 0)
0 – C-SVC
1 – nu-SVC
2 – one-class SVM
3 – epsilon-SVR
4 – nu-SVR
-t kernel_type : set type of kernel function (default 2)
0 – linear: u’v
1 – polynomial: (gamma
u’v + coef0)^degree
2 – radial basis function: exp(-gamma
|u-v|^2)
3 – sigmoid: tanh(gamma*u’v + coef0)
-d degree : set degree in kernel function (default 3)
-g gamma : set gamma in kernel function (default 1/num_features)
-r coef0 : set coef0 in kernel function (default 0)
-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)
-m cachesize : set cache memory size in MB (default 100)
-e epsilon : set tolerance of termination criterion (default 0.001)
-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)
-b probability_estimates: whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)
-wi weight: set the parameter C of class i to weight
C, for C-SVC (default 1)

这里只用到其中两个:
-t 用于指定核函数,
0——线性核
2——高斯核
-c 用于指定C-SVC(经典SVM分类)优化目标函数中的参数C,可以理解为代价,当代价越高时,表示对于分类出错的代价越高,SVM的优化过程如下式。其中 ξ i \xi _{i} ξi 是松弛变量,表示第i个样例分类错误的程度(比如,如果一个正例被分到了反例那边,它距离超平面越远,则 ξ i \xi _{i} ξi越大)
m i n w , b , ξ 1 2 w T w + C ∑ l i = 1 ξ i \underset{w,b,\xi } {min} \frac{1}{2}w^{T}w + C\sum_{l}^{i=1}\xi _{i} w,b,ξmin21wTw+Cli=1ξi
这里先设置核函数为线性核,c为100

model = svm_train(train_label, train_value, '-t 0 -c 100')

然后,计算准确率:

p_label, p_acc, p_val = svm_predict(train_label, train_value, model)

然后,为了可以展示效果,可以对其进行可视化,代码如下:

train_label, train_value = svm_read_problem("./xigua.scale")
x1 = [mapi[1] for mapi in train_value]
x2 = [mapi[2] for mapi in train_value]
x = np.c_[x1,x2]np_x = np.asarray(x)
np_y = np.asarray(train_label)
N, M = 100, 100x1_min, x2_min = np_x.min(axis=0)
x1_max, x2_max = np_x.max(axis=0)x1_min -= 0.1
x2_min -= 0.1
x1_max += 0.1 
x2_max += 0.1t1 = np.linspace(x1_min, x1_max, N)
t2 = np.linspace(x2_min, x2_max, M)grid_x, grid_y = np.meshgrid(t1,t2)grid = np.stack([grid_x.flat, grid_y.flat], axis=1)
y_fake = np.zeros((N*M,))
y_predict, _, _ = svm_predict(y_fake, grid, model)cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0'])
plt.pcolormesh(grid_x, grid_y, np.array(y_predict).reshape(grid_x.shape), cmap=cm_light)
plt.scatter(x[:,0], x[:,1], s=30, c=train_label, marker='o')plt.show()

首先,用线性核进行训练,得到如下结果:

在这里插入图片描述

Accuracy = 82.3529% (14/17) (classification)

然后,将线性核改为高斯核,再次运行:

在这里插入图片描述
Accuracy = 82.3529% (14/17) (classification)

这里可以通过提高参数C来提高高斯核分类的准确率。
将C修改为10000:

model = svm_train(train_label, train_value, '-t 2 -c 10000')

再次运行:

在这里插入图片描述
Accuracy = 100% (17/17) (classification)

通过观察可以发现,由于训练集在二维特征空间中线性不可分,所以使用线性核无法全部分类正确,而使用高斯核可以将二维特征点升高维度,从而让这些点在高维空间中线性可分。同时,随着参数C的提高,分类错误代价会提高,训练过程中,超平面会尽可能的将训练集全部分开,但会有过拟合的风险。

这篇关于周志华《机器学习》习题6.2——使用LIBSVM比较线性核和高斯核的差别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/813353

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<