周志华《机器学习》习题6.2——使用LIBSVM比较线性核和高斯核的差别

本文主要是介绍周志华《机器学习》习题6.2——使用LIBSVM比较线性核和高斯核的差别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.题目

试使用LIBSVM,在西瓜数据集3.0α上分别用线性核和高斯核训练一个SVM,并比较其支持向量的差别。

西瓜数据集3.0α如下图:
在这里插入图片描述

2.LIBSVM

libsvm是目前比较著名的SVM软件包,由台湾大学林智仁(Chih-Jen Lin)教授等开发,它可以帮助程序员轻松的实现SVM二分类、多分类或者SVR等任务。
LIBSVM官网:https://www.csie.ntu.edu.tw/~cjlin/libsvm/
在这里插入图片描述

可以根据官网新手引导进行下载和配置,这里就直接使用anaconda进行安装了。
在anaconda控制台中输入

pip install libsvm

即可安装。

3. 代码实现

因为我过去下载的数据集是xlsx格式,所以这里需要将表格数据转成libsvm要求的数据格式。当然,下面我将转换完的数据放进来了,如果需要可以直接复制粘贴。
libsvm要求数据集为以下格式:数据集包含若干行,每行对应一个样例,对于每个样例有以下格式:

[类别] [属性编号1]:[属性值1] [属性编号2]:[属性值2] …

以本题的西瓜数据为例子,转换完就是这样:

1 1:0.697 2:0.46
1 1:0.774 2:0.376
1 1:0.634 2:0.264
1 1:0.608 2:0.318
1 1:0.556 2:0.215
1 1:0.403 2:0.237
1 1:0.481 2:0.149
1 1:0.437 2:0.211
0 1:0.666 2:0.091
0 1:0.243 2:0.267
0 1:0.245 2:0.057
0 1:0.343 2:0.099
0 1:0.639 2:0.161
0 1:0.657 2:0.198
0 1:0.36 2:0.37
0 1:0.593 2:0.042
0 1:0.719 2:0.103

对于第一行: ”1 1:0.697 2:0.46“
从左到右数字依次的含义是,“1” 表示第1个类别,“1:0.697” 表示第一个属性取值0.697,“2:0.46” 表示第二个属性取值0.46。
然后,将上述格式的数据存在一个.scale或者.txt文件,就可作为libsvm的训练数据,留给后续步骤使用。

from libsvm.svm import *
from libsvm.svmutil import *
import openpyxl
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as npdef xl_to_scale_file():workbook = openpyxl.load_workbook("../第三章_线性模型/xigua3.0.xlsx")sheet1 = workbook['Sheet1']with open("./xigua.scale", 'w') as f:i = 0data_class = sheet1[3][i]for i in range(sheet1.max_column):data_class = sheet1[3][i]atr_1 = sheet1[1][i]atr_2 = sheet1[2][i]line = str(data_class.value) + " 1:" + str(atr_1.value) + " 2:" + str(atr_2.value)f.writelines(line + "\n")

然后,就可以调用libsvm了。
首先使用 svm_read_problem() 将训练集读入进来:

train_label, train_value = svm_read_problem("./xigua.scale")

然后,调用svm_train()训练svm,第一个参数为训练标签,第二个数据为训练样本,第三个数据为字符串,用来指定svm的参数,其可以指定的参数完整版说明如下:

options:
-s svm_type : set type of SVM (default 0)
0 – C-SVC
1 – nu-SVC
2 – one-class SVM
3 – epsilon-SVR
4 – nu-SVR
-t kernel_type : set type of kernel function (default 2)
0 – linear: u’v
1 – polynomial: (gamma
u’v + coef0)^degree
2 – radial basis function: exp(-gamma
|u-v|^2)
3 – sigmoid: tanh(gamma*u’v + coef0)
-d degree : set degree in kernel function (default 3)
-g gamma : set gamma in kernel function (default 1/num_features)
-r coef0 : set coef0 in kernel function (default 0)
-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)
-m cachesize : set cache memory size in MB (default 100)
-e epsilon : set tolerance of termination criterion (default 0.001)
-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)
-b probability_estimates: whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)
-wi weight: set the parameter C of class i to weight
C, for C-SVC (default 1)

这里只用到其中两个:
-t 用于指定核函数,
0——线性核
2——高斯核
-c 用于指定C-SVC(经典SVM分类)优化目标函数中的参数C,可以理解为代价,当代价越高时,表示对于分类出错的代价越高,SVM的优化过程如下式。其中 ξ i \xi _{i} ξi 是松弛变量,表示第i个样例分类错误的程度(比如,如果一个正例被分到了反例那边,它距离超平面越远,则 ξ i \xi _{i} ξi越大)
m i n w , b , ξ 1 2 w T w + C ∑ l i = 1 ξ i \underset{w,b,\xi } {min} \frac{1}{2}w^{T}w + C\sum_{l}^{i=1}\xi _{i} w,b,ξmin21wTw+Cli=1ξi
这里先设置核函数为线性核,c为100

model = svm_train(train_label, train_value, '-t 0 -c 100')

然后,计算准确率:

p_label, p_acc, p_val = svm_predict(train_label, train_value, model)

然后,为了可以展示效果,可以对其进行可视化,代码如下:

train_label, train_value = svm_read_problem("./xigua.scale")
x1 = [mapi[1] for mapi in train_value]
x2 = [mapi[2] for mapi in train_value]
x = np.c_[x1,x2]np_x = np.asarray(x)
np_y = np.asarray(train_label)
N, M = 100, 100x1_min, x2_min = np_x.min(axis=0)
x1_max, x2_max = np_x.max(axis=0)x1_min -= 0.1
x2_min -= 0.1
x1_max += 0.1 
x2_max += 0.1t1 = np.linspace(x1_min, x1_max, N)
t2 = np.linspace(x2_min, x2_max, M)grid_x, grid_y = np.meshgrid(t1,t2)grid = np.stack([grid_x.flat, grid_y.flat], axis=1)
y_fake = np.zeros((N*M,))
y_predict, _, _ = svm_predict(y_fake, grid, model)cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0'])
plt.pcolormesh(grid_x, grid_y, np.array(y_predict).reshape(grid_x.shape), cmap=cm_light)
plt.scatter(x[:,0], x[:,1], s=30, c=train_label, marker='o')plt.show()

首先,用线性核进行训练,得到如下结果:

在这里插入图片描述

Accuracy = 82.3529% (14/17) (classification)

然后,将线性核改为高斯核,再次运行:

在这里插入图片描述
Accuracy = 82.3529% (14/17) (classification)

这里可以通过提高参数C来提高高斯核分类的准确率。
将C修改为10000:

model = svm_train(train_label, train_value, '-t 2 -c 10000')

再次运行:

在这里插入图片描述
Accuracy = 100% (17/17) (classification)

通过观察可以发现,由于训练集在二维特征空间中线性不可分,所以使用线性核无法全部分类正确,而使用高斯核可以将二维特征点升高维度,从而让这些点在高维空间中线性可分。同时,随着参数C的提高,分类错误代价会提高,训练过程中,超平面会尽可能的将训练集全部分开,但会有过拟合的风险。

这篇关于周志华《机器学习》习题6.2——使用LIBSVM比较线性核和高斯核的差别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/813353

相关文章

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma