【Linux基础系列之】pinctrl系统

2024-03-15 17:38

本文主要是介绍【Linux基础系列之】pinctrl系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  pinctrl子系统用于控制管脚管理soc的管脚,它通常可以以一组寄存器的形式存在,用于使能独立或成组管脚的复用、设置负载电流、设置驱动能力等;


(一) pinctrl系统概述

(1)基本概念

  管脚定义:管脚(也代指pad、金手指、ball,依据其封装不同)输入/输出线使用无符号整型数表示,范围为0到maxpin。这个数字空间是每个管脚控制器独有的,这样,一个系统中可能有几个此类的数字空间。管脚空间可以是稀疏的,空间中可能存在一些并没有管脚存在间隙。用struct pinctrl_dev实例化一个管脚控制器,同时会注册一个描述符到管脚控制架构,这个描述符包含一组为它控制管脚的管脚描述符(struct pinctrl_desc).

128 struct pinctrl_desc {
129     const char *name;
130     const struct pinctrl_pin_desc *pins;
131     unsigned int npins;
132     const struct pinctrl_ops *pctlops;
133     const struct pinmux_ops *pmxops;
134     const struct pinconf_ops *confops;
135     struct module *owner;
141 };

  通过struct pin_desc来描述每个物理pin脚:

147 struct pin_desc {
148     struct pinctrl_dev *pctldev;
149     const char *name;
150     bool dynamic_name;
151     /* These fields only added when supporting pinmux drivers */
152 #ifdef CONFIG_PINMUX
153     unsigned mux_usecount;
154     const char *mux_owner;
155     const struct pinctrl_setting_mux *mux_setting;
156     const char *gpio_owner;
157 #endif
158 };

  pin control subsystem的主要功能包括:

(1)管理系统中所有可以控制的pin。在系统初始化的时候,枚举所有可以控制的pin,并标识这些pin。

(2)管理这些pin的复用(Multiplexing)。对于SOC而言,其引脚除了配置成普通GPIO之外,若干个引脚还可以组成一个pin group,形成特定的功能。pin control subsystem要管理所有的pin group。

(3)配置这些pin的特性。例如配置该引脚上的pull-up/down电阻,配置drive strength等

下面依次介绍几个重要元素:


(a)Pin groups

  有时需要将很多pin组合在一起,以实现特定的功能,例如SPI接口、I2C接口等。因此pin controller需要以group为单位,访问、控制多个pin,这就是pin groups, 通过 pinctrl_ops定义的接口来访问操作group pin :

 90 struct pinctrl_ops {91     int (*get_groups_count) (struct pinctrl_dev *pctldev);92     const char *(*get_group_name) (struct pinctrl_dev *pctldev,93                        unsigned selector);94     int (*get_group_pins) (struct pinctrl_dev *pctldev,95                    unsigned selector,96                    const unsigned **pins,97                    unsigned *num_pins);98     void (*pin_dbg_show) (struct pinctrl_dev *pctldev, struct seq_file *s,99               unsigned offset); 
100     int (*dt_node_to_map) (struct pinctrl_dev *pctldev,
101                    struct device_node *np_config,
102                    struct pinctrl_map **map, unsigned *num_maps);
103     void (*dt_free_map) (struct pinctrl_dev *pctldev,
104                  struct pinctrl_map *map, unsigned num_maps);
105 };

get_groups_count():获取系统中pin groups的个数,后续的操作,将以相应的索引为单位(类似数组的下标,个数为数组的大小)。

get_group_name():获取指定group(由索引selector指定)的名称。

get_group_pins():获取指定group的所有pins(由索引selector指定),结果保存在pins(指针数组)和num_pins(指针)中。


(b)Pin configuration

  管脚有时可以被软件配置成多种方式,多数与它们作为输入/输出时的电气特性相关。例如,可以使一个输出管脚处于高阻状态,或是“三态”(意味着它被有效地断开连接)。你可以通过设置一个特定寄存器值将一个输入管脚与VDD或GND相连—上拉/下拉—以便在没有信号驱动管脚或是未连接时管脚上可以有个确定的值。体现在struct pinconf_ops数据结构中:

 41 pinconf_opsstruct pinconf_ops {42 #ifdef CONFIG_GENERIC_PINCONF43     bool is_generic;44 #endif                    45     int (*pin_config_get) ();        48     int (*pin_config_set) ();         52     int (*pin_config_group_get) ();        55     int (*pin_config_group_set) ();         59     int (*pin_config_dbg_parse_modify) ();        62     void (*pin_config_dbg_show) ();              65     void (*pin_config_group_dbg_show) ();            68     void (*pin_config_config_dbg_show) ();         71 };

pin_config_get() : 获取指定pin(管脚的编号,由2.1中pin的注册信息获得)当前配置,保存在config指针中(配置的具体含义,只有pinctrl driver自己知道,下同)。

pin_config_set() : 设置指定pin的配置(可以同时配置多个config,具体意义要由相应pinctrl driver解释)。

pin_config_group_get()、pin_config_group_set() : 获取或者设置指定pin group的配置项。


(c)Pin multiplexing

  PINMUX也称作padmux,ballmux,它是由芯片厂商依据应用,使用一个特定的物理管脚(ball/pad/finger/等等)进行多种扩展复用,以支持不同功能的电气封装的习惯。芯片使用这个方法将不同的功能多路复用到不同管脚的范围。现在的SOC系统会包含几个I2C、SPI、SDIO/MMC等功能块,它们可以通过管脚多路复用设置被路由到不同的管脚。因为GPIO常常不足,通常会将所有当前未被使用的管脚用作GPIO。

  SoC中的很多管脚可以配置为不同的功能,pinctrl subsystem使用struct pinmux_ops来抽象pinmux有关的操作;

 63 struct pinmux_ops {  64     int (*request) ();65     int (*free) ();66     int (*get_functions_count) ();67     const char *(*get_function_name) ();69     int (*get_function_groups) ();73     int (*set_mux) ();75     int (*gpio_request_enable) ();78     void (*gpio_disable_free) ();81     int (*gpio_set_direction) ();85     bool 

这篇关于【Linux基础系列之】pinctrl系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/812740

相关文章

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Linux线程之线程的创建、属性、回收、退出、取消方式

《Linux线程之线程的创建、属性、回收、退出、取消方式》文章总结了线程管理核心知识:线程号唯一、创建方式、属性设置(如分离状态与栈大小)、回收机制(join/detach)、退出方法(返回/pthr... 目录1. 线程号2. 线程的创建3. 线程属性4. 线程的回收5. 线程的退出6. 线程的取消7.

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

linux解压缩 xxx.jar文件进行内部操作过程

《linux解压缩xxx.jar文件进行内部操作过程》:本文主要介绍linux解压缩xxx.jar文件进行内部操作,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、解压文件二、压缩文件总结一、解压文件1、把 xxx.jar 文件放在服务器上,并进入当前目录#

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu