爬取某站排行榜Top100的视频数据

2024-03-15 13:50

本文主要是介绍爬取某站排行榜Top100的视频数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python爬取排行榜视频信息

  • 1、第三方库导入
  • 2、程序运行主函数
  • 3、程序运行结果
  • 4、程序源代码

  • 记得点赞👍、收藏呀!!!

1、第三方库导入

from bs4 import BeautifulSoup # 解析网页
import re   # 正则表达式,进行文字匹配
import urllib.request,urllib.error  # 通过浏览器请求数据
import sqlite3  # 轻型数据库
import time  # 获取当前时间

2、程序运行主函数

爬取过程主要包括声明爬取网页 -> 爬取网页数据并解析 -> 保存数据

def main():#声明爬取网站baseurl = "https://www.bilibili.com/v/popular/rank/all"#爬取网页datalist = getData(baseurl)# print(datalist)#保存数据dbname = time.strftime("%Y-%m-%d", time.localtime())dbpath = "BiliBiliTop100  " + dbnamesaveData(datalist,dbpath)

(1)在爬取的过程中采用的技术为:伪装成浏览器对数据进行请求;
(2)解析爬取到的网页源码时:采用Beautifulsoup解析出需要的数据,使用re正则表达式对数据进行匹配;
(3)保存数据时,考虑到B站排行榜是每日进行刷新,故可以用当前日期进行保存数据库命名。

3、程序运行结果

在这里插入图片描述
数据库中包含的数据有:排名、视频链接、标题、播放量、评论量、作者、综合分数这7个数据。
在这里插入图片描述

4、程序源代码

from bs4 import BeautifulSoup #解析网页
import re # 正则表达式,进行文字匹配
import urllib.request,urllib.error
import sqlite3
import timedef main():#声明爬取网站baseurl = "https://www.bilibili.com/v/popular/rank/all"#爬取网页datalist = getData(baseurl)# print(datalist)#保存数据dbname = time.strftime("%Y-%m-%d", time.localtime())dbpath = "BiliBiliTop100  " + dbnamesaveData(datalist,dbpath)#re正则表达式
findLink =re.compile(r'<a class="title" href="(.*?)"') #视频链接
findOrder = re.compile(r'<div class="num">(.*?)</div>') #榜单次序
findTitle = re.compile(r'<a class="title" href=".*?" target="_blank">(.*?)</a>') #视频标题
findPlay = re.compile(r'<span class="data-box"><i class="b-icon play"></i>([\s\S]*)(.*?)</span> <span class="data-box">') #视频播放量
findView = re.compile(r'<span class="data-box"><i class="b-icon view"></i>([\s\S]*)(.*?)</span> <a href=".*?" target="_blank"><span class="data-box up-name">') # 视频评价数
findName = re.compile(r'<i class="b-icon author"></i>(.*?)</span></a>',re.S) #视频作者
findScore = re.compile(r'<div class="pts"><div>(.*?)</div>综合得分',re.S) #视频得分
def getData(baseurl):datalist = []html = askURL(baseurl)#print(html)soup = BeautifulSoup(html,'html.parser')  #解释器for item in soup.find_all('li',class_="rank-item"):# print(item)data = []item = str(item)Order = re.findall(findOrder,item)[0]data.append(Order)# print(Order)Link = re.findall(findLink,item)[0]Link = 'https:' + Linkdata.append(Link)# print(Link)Title = re.findall(findTitle,item)[0]data.append(Title)# print(Title)Play = re.findall(findPlay,item)[0][0]Play = Play.replace(" ","")Play = Play.replace("\n","")Play = Play.replace(".","")Play = Play.replace("万","0000")data.append(Play)# print(Play)View = re.findall(findView,item)[0][0]View = View.replace(" ","")View = View.replace("\n","")View = View.replace(".","")View = View.replace("万","0000")data.append(View)# print(View)Name = re.findall(findName,item)[0]Name = Name.replace(" ","")Name = Name.replace("\n","")data.append(Name)# print(Name)Score = re.findall(findScore,item)[0]data.append(Score)# print(Score)datalist.append(data)return datalistdef askURL(url):#设置请求头head = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0;Win64;x64) AppleWebKit/537.36(KHTML, likeGecko) Chrome/80.0.3987.163Safari/537.36"}request = urllib.request.Request(url, headers = head)html = ""try:response = urllib.request.urlopen(request)html = response.read().decode("utf-8")#print(html)except urllib.error.URLError as e:if hasattr(e,"code"):print(e.code)if hasattr(e,"reason"):print(e.reason)return htmldef saveData(datalist,dbpath):init_db(dbpath)conn = sqlite3.connect(dbpath)cur = conn.cursor()for data in datalist:sql = '''insert into Top100(id,info_link,title,play,view,name,score)values("%s","%s","%s","%s","%s","%s","%s")'''%(data[0],data[1],data[2],data[3],data[4],data[5],data[6])print(sql)cur.execute(sql)conn.commit()cur.close()conn.close()def init_db(dbpath):sql = '''create table Top100(id integer primary key autoincrement,info_link text,title text,play numeric,view numeric,name text,score numeric)'''conn = sqlite3.connect(dbpath)cursor = conn.cursor()cursor.execute(sql)conn.commit()conn.close()if __name__ =="__main__":main()

这篇关于爬取某站排行榜Top100的视频数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/812192

相关文章

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

MySQL数据脱敏的实现方法

《MySQL数据脱敏的实现方法》本文主要介绍了MySQL数据脱敏的实现方法,包括字符替换、加密等方法,通过工具类和数据库服务整合,确保敏感信息在查询结果中被掩码处理,感兴趣的可以了解一下... 目录一. 数据脱敏的方法二. 字符替换脱敏1. 创建数据脱敏工具类三. 整合到数据库操作1. 创建服务类进行数据库

MySQL中处理数据的并发一致性的实现示例

《MySQL中处理数据的并发一致性的实现示例》在MySQL中处理数据的并发一致性是确保多个用户或应用程序同时访问和修改数据库时,不会导致数据冲突、数据丢失或数据不一致,MySQL通过事务和锁机制来管理... 目录一、事务(Transactions)1. 事务控制语句二、锁(Locks)1. 锁类型2. 锁粒