selenium+opencv解决猫眼电影排行榜带缺口滑动验证码问题

本文主要是介绍selenium+opencv解决猫眼电影排行榜带缺口滑动验证码问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

        相信初学爬虫大家拿来练手的会有猫眼、软科大学排行榜等,但可能正因为此,太多人拿他们来做练习了,他们也相应的设置了反爬虫机制。

        猫眼在直接登陆: 猫眼验证中心 时会弹出滑动验证码,验证了才能进入到排行榜页面,如下图所示,对于刚学爬虫时的我造成了很大的困扰,现在来对此进行解决。

        获取原图的相关思路在右侧目录中,可供参考,点击后可找到相关内容:

项目分析

        这种滑动验证码的类型大致可分为两种:1.源码中能找到完整背景图的;2.没有提供完整背景图的。对于第一种情况,一般的处理方式是分别找出有缺口的图片和完整的背景图,然后进行像素点对比,找出缺口位置,获取缺口的偏移量最后确定滑块的移动轨迹。而第二种情况,则是获取带缺口的背景图片和滑块的图片,然后通过opencv库对图片进行识别,缺口匹配,得出最优的匹配结果,锁定滑块的移动轨迹,这种解决方式同样可以解决第一种类型的验证码。

        这里属于第二种情况,那么我们就基于此具体分析下解决步骤:

初始化信息
定位获取背景图元素
定位获取缺块元素
定位获取滑块元素
获取带缺口背景图和缺块图片
识别缺口位置
设计移动速度和移动轨迹
拖动滑块

项目实现

1)初始化信息

    def __init__(self):# 获取链接self.url = 'https://maoyan.com/board/4?offset=100'# 获取浏览器驱动self.browser = webdriver.Chrome()# 设置显式等待self.wait = WebDriverWait(self.browser, 10)

2)定位获取所需元素

        在我定位验证码滑块元素的时候一直显示我定位语句错误,多次调试定位方法及路径未果,后来发现这里验证码的部分是用iframe写入的,具体对此问题的解决办法,可以观看我的另一篇博客:iframe中碰到的问题及解决方法_Yy_Rose的博客-CSDN博客

         所以在定位元素前我们需要先切换到元素所在的frame中:

iframe = self.wait.until(EC.presence_of_all_elements_located((By.TAG_NAME, 'iframe')))
self.wait.until(EC.frame_to_be_available_and_switch_to_it(iframe[1]))

        定位获取带缺口的背景图元素:

def bg_img_src(self):bg_img_element = self.wait.until(EC.presence_of_element_located((By.XPATH,'//*[@class="tc-bg"]/img')))# 获取src属性内容bg_img_src = bg_img_element.get_attribute('src')return bg_img_src

        定位缺块元素:

def jpp_img_src(self):target_img_element = self.wait.until(EC.presence_of_element_located((By.XPATH,'//*[@class="tc-jpp"]/img')))target_img_src = target_img_element.get_attribute('src')return target_img_src

        定位滑块元素:

def slider_element(self):time.sleep(2)slider = self.wait.until(EC.presence_of_element_located((By.XPATH,'//*[@class="tc-drag-thumb"]')))return slider

 3)获取带缺口背景图片和滑块图片

def get_img(self):# 获取图片bg_src = self.bg_img_src()jpp_src = self.jpp_img_src()response1 = requests.get(bg_src)# 存储Byte类型的图片image1 = Image.open(BytesIO(response1.content))# 图片像素 680*390image1.save('bg_img.png')response2 = requests.get(jpp_src)image2 = Image.open(BytesIO(response2.content))# 图片像素 136*136image2.save('jpp_img.png')return image1, image2

获取到的图片示例:

bg_img.png

 

 jpp_img.png

 获取原图    

        我之前在测试获取图片链接的时候发现:

https://t.captcha.qq.com/hycdn?index=1&image=937159045618524928?aid=2017906796&sess=s0_QNEh1POoUl_dl78OfZqI8viz1ySW3lXnvGYJiBhoyIug8jmmzlx6u7rxisrmwscXjUZTPlsJgvXdYTyOXN4uY4pi4h_G5gHbBiOqFaQXWCnSK-v0RWLusaq9WCotUPXwls0n4klirO6y62DpY6NoIPLX6yEn4JEeCZ-ZA_UHrTeXojyyr06SHXn32TiNz1ci6xefUfsaJEleOwSwC1NMDlIyUhCHsbM5zrIV52jzoI6gPg9G4gj3d0xDXN9MHLUaC3qxPBIyIQ6DMvBPr75rSjEInC7zQ0oksYMlq6HrtRuZQ15p7x0cQ**&sid=6873095789103194112&img_index=1&subsid=3
**&sid=6873095789103194112&img_index=1&subsid=3

        这个之前的链接点开就能获取完整的背景图

         所以我进行了以下的尝试:

bc_element = browser.find_element(By.XPATH, '//*[@class="tc-bg"]/img').get_attribute('src').split('**')
img_src = bc_element[0]
print(img_src)

        获取到了只有前面那段的链接,经过多次测试,虽然后面id是会变动的,但仍很大概率都是与验证码相匹配的背景完整图,这里只是提供另一种做法找原图的思路。

4)识别缺口位置

def get_gap(self, gap_img):# 读取图片bg_img = cv2.imread('bg_img.png')tp_img = cv2.imread('jpp_img.png')# 图片边缘检测,最小100,最大200bg_edge = cv2.Canny(bg_img, 100, 200)tp_edge = cv2.Canny(tp_img, 100, 200)# 转换图片格式# 灰度图片转为RGB彩色图片bg_pic = cv2.cvtColor(bg_edge, cv2.COLOR_GRAY2RGB)tp_pic = cv2.cvtColor(tp_edge, cv2.COLOR_GRAY2RGB)# 缺口匹配res = cv2.matchTemplate(bg_pic, tp_pic, cv2.TM_CCOEFF_NORMED)# 寻找最优匹配min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)  # 绘制方框# img.shape[:2] 获取图片的长、宽height, width = tp_pic.shape[:2]tl = max_loc  # 左上角点的坐标# 绘制矩形# cv2.rectangle(img, (x1, y1), (x2, y2), RGB颜色值, 边框宽度--->若为负则填充整个矩形)cv2.rectangle(bg_img, tl, (tl[0] + width - 15, tl[1] + height - 15),(0, 0, 255), 2)# 保存在本地  cv2.imwrite(gap_img, bg_img)  # 以下三行语句是使图片窗口可视化# cv2.imshow('Show', bg_img)# cv2.waitKey(0)# cv2.destroyAllWindows()# 返回缺口的X坐标return tl[0]

相关知识:opencv cv2.rectangle 参数含义_Gaowang_1的博客-CSDN博客_cv2.rectangle

识别出的缺口位置:

5)获取运动轨迹

def get_track(self, distance):# 移动轨迹track = []# 当前位移current = 0# 减速阈值mid = distance * 4 / 5# 计算间隔t = 0.2# 初速度v = 0while current < distance:if current < mid:# 加速度为正5,可以选择调快点a = 5else:# 加速度为负3a = -3# 初速度v0v0 = v# 当前速度v = v0 + atv = v0 + a * t# 移动距离x = v0t + 1/2 * a * t^2move = v0 * t + 1 / 2 * a * t * t# 当前位移current += move# 加入轨迹track.append(round(move))return track

6)移动滑块

def move_to_gap(self, slider, track):# click_and_hold()按住底部滑块ActionChains(self.browser).click_and_hold(slider).perform()# 沿x轴方向移动for x in track:ActionChains(self.browser).move_by_offset(xoffset=x,yoffset=0).perform()time.sleep(0.5)# release()松开鼠标ActionChains(self.browser).release().perform()

源码

from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
import time
from PIL import Image
import cv2
from selenium.webdriver import ActionChains
import requests
from io import BytesIOclass MaoYanCode(object):# 初始化def __init__(self):self.url = 'https://maoyan.com/board/4?offset=100'self.browser = webdriver.Chrome()self.wait = WebDriverWait(self.browser, 10)def open(self):# 打开网页self.browser.get(self.url)# 定位背景图def bg_img_src(self):bg_img_element = self.wait.until(EC.presence_of_element_located((By.XPATH,'//*[@class="tc-bg"]/img')))bg_img_src = bg_img_element.get_attribute('src')return bg_img_src# 定位缺块def jpp_img_src(self):target_img_element = self.wait.until(EC.presence_of_element_located((By.XPATH,'//*[@class="tc-jpp"]/img')))target_img_src = target_img_element.get_attribute('src')return target_img_src# 获取背景和缺块图片def get_img(self):bg_src = self.bg_img_src()jpp_src = self.jpp_img_src()response1 = requests.get(bg_src)image1 = Image.open(BytesIO(response1.content))image1.save('bg_img.png')response2 = requests.get(jpp_src)image2 = Image.open(BytesIO(response2.content))image2.save('jpp_img.png')return image1, image2# 定位滑块def slider_element(self):time.sleep(2)slider = self.wait.until(EC.presence_of_element_located((By.XPATH,'//*[@class="tc-drag-thumb"]')))return slider# 识别缺口def get_gap(self, gap_img):bg_img = cv2.imread('bg_img.png')tp_img = cv2.imread('jpp_img.png')# 识别图片边缘bg_edge = cv2.Canny(bg_img, 100, 200)tp_edge = cv2.Canny(tp_img, 100, 200)# 转换图片格式# 灰度图片转为RGB彩色图片bg_pic = cv2.cvtColor(bg_edge, cv2.COLOR_GRAY2RGB)tp_pic = cv2.cvtColor(tp_edge, cv2.COLOR_GRAY2RGB)# 缺口匹配res = cv2.matchTemplate(bg_pic, tp_pic, cv2.TM_CCOEFF_NORMED)min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)  # 寻找最优匹配# 绘制方框# img.shape[:2] 获取图片的长、宽height, width = tp_pic.shape[:2]tl = max_loc  # 左上角点的坐标# cv2.rectangle(img, (x1, y1), (x2, y2), RGB颜色值, 边框宽度--->若为负则填充整个矩形)cv2.rectangle(bg_img, tl, (tl[0] + width - 15, tl[1] + height - 15),(0, 0, 255), 2)  # 绘制矩形cv2.imwrite(gap_img, bg_img)  # 保存在本地# cv2.imshow('Show', bg_img)# cv2.waitKey(0)# cv2.destroyAllWindows()# 返回缺口的X坐标return tl[0]# 构造移动轨迹def get_track(self, distance):# 移动轨迹track = []# 当前位移current = 0# 减速阈值mid = distance * 4 / 5# 计算间隔t = 0.2# 初速度v = 0while current < distance:if current < mid:# 加速度为正5a = 5else:# 加速度为负3a = -3# 初速度v0v0 = v# 当前速度v = v0 + atv = v0 + a * t# 移动距离x = v0t + 1/2 * a * t^2move = v0 * t + 1 / 2 * a * t * t# 当前位移current += move# 加入轨迹track.append(round(move))return track# 移动滑块def move_to_gap(self, slider, track):# click_and_hold()按住底部滑块ActionChains(self.browser).click_and_hold(slider).perform()for x in track:ActionChains(self.browser).move_by_offset(xoffset=x,yoffset=0).perform()time.sleep(0.5)# release()松开鼠标ActionChains(self.browser).release().perform()def login(self):self.open()time.sleep(2)# 网速原因可能导致网页加载不完全,致使iframe报错iframe = self.wait.until(EC.presence_of_all_elements_located((By.TAG_NAME, 'iframe')))self.wait.until(EC.frame_to_be_available_and_switch_to_it(iframe[1]))self.get_img()slider = self.slider_element()slider.click()gap = self.get_gap('result.png')# 页面为360*360,图片为680*390,更改比例,减去初始位移gap_end = int((gap - 40) / 2)# 获取缺口print('缺口位置', gap_end)# 减去缺块白边gap_end -= 10# 获取移动轨迹track = self.get_track(gap_end)print('滑动轨迹', track)# 拖动滑块self.move_to_gap(slider, track)if __name__ == '__main__':crack = MaoYanCode()crack.login()

        注意:图片保存下来为原图大小,要用代码更改为与页面对应适合的比例,不然位移量会错误。

gap_end = int((gap - 30) / 2)

        如果导入cv2报错,可参考:cv2导入失败原因及安装opencv后仍报错的解决方式_Yy_Rose的博客-CSDN博客

        如果需要登录验证的,则多定义一个函数用于键入数据,然后点击获取验证码后模拟点击登录就行了。selenium+crop+chaojiying之登录超级鹰_Yy_Rose的博客-CSDN博客 中有相关操作。

        友情提示:如果网络较差,可能导致页面加载不完全,以至于元素读取不到,可以选择重试或采取异常捕捉后延时等待的方式进行处理,同时可以设置代理ip以免请求过多被拒绝服务,这里提供几个https的免费代理ip:

111.201.210.192:7890
8.218.91.61:59394
114.238.91.235:30001

        代理ip网站:免费代理ip网站总结_成长的烧年-CSDN博客_免费代理ip网站

        xpath相关Chrome浏览器插件安装及selenium中如何配置使用插件:

xpath-helper、chropath下载方式及selenium中如何配置使用插件_Yy_Rose的博客-CSDN博客

结言

        以上并不一定是最优解,后续将会进行更新,欢迎大家指正交流~

—————————————————更新于2021.12.08——————————————————

这篇关于selenium+opencv解决猫眼电影排行榜带缺口滑动验证码问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/812191

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

XML重复查询一条Sql语句的解决方法

《XML重复查询一条Sql语句的解决方法》文章分析了XML重复查询与日志失效问题,指出因DTO缺少@Data注解导致日志无法格式化、空指针风险及参数穿透,进而引发性能灾难,解决方案为在Controll... 目录一、核心问题:从SQL重复执行到日志失效二、根因剖析:DTO断裂引发的级联故障三、解决方案:修复

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模