从”众人拾柴火焰高“看蚁群算法如何得最优解

2024-03-15 04:50

本文主要是介绍从”众人拾柴火焰高“看蚁群算法如何得最优解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、概述

题目虽然起的很文艺,不过从我对该算法的理解,蚁群算法着实有这么点意思。接下来我将用”土话“帮助大家理解一下该算法。



蚁群算法是一种用来寻找优化路径的概率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。(源自百度百科)


此算法运用了仿生学的原理。假如黄旗为蚂蚁群,红旗为食物。蚂蚁群体从黄旗到红旗有三条路,蚂蚁群的起始地选择是均等的。蚂蚁在走的时候都会留下自己的气味(学名:信息素),这个气味与路程的距离成反比,也就是就是距离越短,气味越重。这时蚂蚁的团结的精神就表现出来了,路程越短的路径,气味越重,这就达到众人拾柴火焰高的效果,吸引来越来越多的蚂蚁去这条最短的路上来,从而得到了最短路径(最优解)。看上图!!加深理解(看来要成为知名博主,ps的能力还需提高啊)

二、应用

伟人发现以及发明该算法主要是为了解决旅行商问题(TSP,旅行商卖东西寻找路径问题),也可以看做蚂蚁觅食寻找最优路径的问题。

所以旅行商问题(蚂蚁整个觅食的过程)有以下的要素:

1、蚁群的数量

2、城市数量

3、不同城市之间的距离

4、信息素因子(前文说的气味)

5、信息素挥发因子

6、信息素常数

7、启发函数因子

8、最大迭代次数

每个参数的设置我就不再赘述,见此博主的详解智能算法---蚁群算法介绍 感谢


需要算法的直接跳到这!!接下来咱们上实战,讲算法


下面以TSP问题为例,给出蚁群算法:

我们随机选10个坐标,作为10个城市的地理坐标。
     0.100000000000000,0.600000000000000;0.200000000000000,0.300000000000000;0.400000000000000,0.100000000000000;0.500000000000000,0.500000000000000;0.700000000000000,0.200000000000000;0.800000000000000,0.400000000000000;0.200000000000000,0.800000000000000;0.500000000000000,0.900000000000000;0.700000000000000,0.600000000000000;0.900000000000000,0.800000000000000]

将其可视化:

上程序:
clear all
clccity10=[0.100000000000000,0.600000000000000;0.200000000000000,0.300000000000000;0.400000000000000,0.100000000000000;0.500000000000000,0.500000000000000;0.700000000000000,0.200000000000000;0.800000000000000,0.400000000000000;0.200000000000000,0.800000000000000;0.500000000000000,0.900000000000000;0.700000000000000,0.600000000000000;0.900000000000000,0.800000000000000]
%% 计算城市间相互距离
n = size(city10,1);                                          
D = zeros(n,n);                                           
for i = 1:nfor j = 1:nif i ~= jD(i,j) = sqrt(sum((city10(i,:) - city10(j,:)).^2));elseD(i,j) = 0;                                       endend    
end%% 初始化参数
m = 16;                              % 蚂蚁数量
alpha = 1;                           % 信息素重要程度因子
rho = 0.2;                           % 信息素挥发因子
Q = 1;                               % 信息素常系数
Eta = 1./D;                          % 启发函数
beta = 4;                            % 启发函数重要程度因子
Tau = ones(n,n);                     % 信息素矩阵,城市i和城市j连接路径上的信息素浓度
road_record = zeros(m,n);            % 路径记录表
iter = 1;                            % 迭代次数初值
iter_max = 150;                      % 最大迭代次数 
Route_best = zeros(iter_max,n);      % 各代最佳路径       
Length_best = zeros(iter_max,1);     % 各代最佳路径的长度  
Length_ave = zeros(iter_max,1);      % 各代路径的平均长度  %% 迭代寻找最佳路径
while iter <= iter_max%1.随机产生各个蚂蚁的起点城市start = zeros(m,1);for i = 1:mtemp = randperm(n);  start(i) = temp(1);  endroad_record(:,1) = start;citys_index = 1:n;%2. 逐个蚂蚁路径选择for i = 1:m%3. 逐个城市路径选择for j = 2:n recorded = road_record(i,1:(j - 1));          allow_index = ~ismember(citys_index,recorded);allow = citys_index(allow_index); P = allow;% 计算城市间转移概率 for k = 1:length(allow)P(k) = Tau(recorded(end),allow(k))^alpha * Eta(recorded(end),allow(k))^beta;endP = P/sum(P);Pc = cumsum(P);    target_index = find(Pc >= rand); target = allow(target_index(1));road_record(i,j) = target;endend% 4.计算各个蚂蚁的路径距离Length = zeros(m,1);for i = 1:mRoute = road_record(i,:);for j = 1:(n - 1)Length(i) = Length(i) + D(Route(j),Route(j + 1));endLength(i) = Length(i) + D(Route(n),Route(1));end% 5.计算最短路径距离及平均距离if iter == 1[min_Length,min_index] = min(Length);Length_best(iter) = min_Length;  Length_ave(iter) = mean(Length);Route_best(iter,:) = road_record(min_index,:);else[min_Length,min_index] = min(Length);Length_best(iter) = min(Length_best(iter - 1),min_Length);Length_ave(iter) = mean(Length);if Length_best(iter) == min_LengthRoute_best(iter,:) = road_record(min_index,:);elseRoute_best(iter,:) = Route_best((iter-1),:);endend% 6.更新信息素Delta_Tau = zeros(n,n);% 7.逐个蚂蚁计算for i = 1:m%8. 逐个城市计算for j = 1:(n - 1)Delta_Tau(road_record(i,j),road_record(i,j+1)) = Delta_Tau(road_record(i,j),road_record(i,j+1)) + Q/Length(i);endDelta_Tau(road_record(i,n),road_record(i,1)) = Delta_Tau(road_record(i,n),road_record(i,1)) + Q/Length(i);endTau = (1-rho) * Tau + Delta_Tau;% 9.迭代次数加1,清空路径记录表iter = iter + 1;road_record = zeros(m,n);
end
%%  结果显示
[Shortest_Length,index] = min(Length_best);
Shortest_Route = Route_best(index,:);
disp(['最短距离:' num2str(Shortest_Length)]);
disp(['最短路径:' num2str([Shortest_Route Shortest_Route(1)])]);
%% 绘图
figure(1)
plot([city10(Shortest_Route,1);city10(Shortest_Route(1),1)],...[city10(Shortest_Route,2);city10(Shortest_Route(1),2)],'o-');
grid on
for i = 1:size(city10,1)text(city10(i,1),city10(i,2),['   ' num2str(i)]);
end
text(city10(Shortest_Route(1),1),city10(Shortest_Route(1),2),'       起点');
text(city10(Shortest_Route(end),1),city10(Shortest_Route(end),2),'       终点');
xlabel('城市位置横坐标')
ylabel('城市位置纵坐标')
title(['蚁群算法优化路径(最短距离:' num2str(Shortest_Length) ')'])
figure(2)
plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r:')
legend('最短距离','平均距离')
xlabel('迭代次数')
ylabel('距离')
title('各代最短距离与平均距离对比')


结果:最短距离:2.9137
最短路径:6   5   3   2   1   7   8  10   9   4   6

左图为最短路线,即最优路线。从右图可以看出迭代了10左右,就得到最优解,可能是起始数据和参数设置的原因,导致收敛速度较快。
不过这都无所谓,具体问题具体解决嘛。



这篇关于从”众人拾柴火焰高“看蚁群算法如何得最优解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/810849

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯: