手把手教你,通过HAL库实现STM32的超声波测距--以SR-04为例

2024-03-14 16:18

本文主要是介绍手把手教你,通过HAL库实现STM32的超声波测距--以SR-04为例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

0、SR-04基本原理

1、准备工作

2、连线

 3、STM32CUBEMX设置

3.1新建工程

3.2芯片通用设置

3.3定时器捕获设置

​3.4其他设置

3.5生成工程

 4、程序完善

4.1完善打印输出函数

 4.2完善tim.c

4.3完善gpio.c 

4.4完善main函数 

 5、总结


0、SR-04基本原理

声波遇到障碍物会反射,而声波的速度已知,所以只需要知道发射到接收的时间差,就能轻松计算出测量距离,再结合发射器和接收器的距离,就能算出障碍物的实际距离。

 

 

以HC-SR04硬件为例,端口为VCC、Trig、Echo、GND。

VCC–接STM32板子+5V;
GND–接STM32板子GND;
Trig–为触发控制信号输入,触发测距,给至少10us的高电平信号,模块自动发射8个40KHz的方波,自动检测是否有信号返回;
Echo–回响信号输出,有信号返回,通过IO口ECHO输出一个高电平,高电平持续时间就是超声波从发射到返回的时间。
那用STM32怎么给端口信号呢?又是怎么获取信号呢?
Trig端口为超声波模块的输入信号,也就是通过STM23一个端口推挽输出一个至少10us的高电平信号即可,利用delay_ms(20)实现;
Echo端口为超声波模块的输出信号,也就是利用STM32端口捕获高电平时间,那么这个端口肯定是可以用做定时器的端口。
通过以上分析,这里采用以下STM32端口

 

1、准备工作

开发板:STM32F1精英版

软件:STM32CubeMx软件

IDE: MDK-Keil软件

传感器:HC-SR04

2、连线

选择TIM5的CH1即PA0作为输入捕获引脚(Echo),选择PA5作为触发脚Trig。具体连接线如下:

红线连接精英版的5V与SR04的VCC脚

白线连接精英板的GND与SR04的GND脚

橙色线连接精英板的PA5与Trig脚

黑色线连接精英板的PA0与Echo脚

 3、STM32CUBEMX设置

3.1新建工程

1)新建工程

2)选择芯片

3.2芯片通用设置

1)时钟芯片设置

2)时钟设置

3)系统调试设置

3.3定时器捕获设置

由于前文连线中,我们将TIMER5CH1作为输入捕获引脚,所以对TIMER5进行设置:

Channel 1选择:Input Capture direct mode

与分频系数填写:72-1(则每次计数为1us)

Polarity Selection选择:Rising Edge(上升沿)

其他保持不变。

NVIC settings选择TIM5 global interrupt


3.4其他设置

1)USART1设置

为了方便调试,将测量所得数据通过串口传递到电脑上进行显示,此处使用串口1通过printf将输出发送至电脑。

 2)GPIO配置

 此处选择PA5作为Trig脚,具体配置如下:

3.5生成工程

 4、程序完善

4.1完善打印输出函数

在main函数中加入下面语句:

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stdio.h"
#include "string.h"
/* USER CODE END Includes *//* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
#ifdef __GNUC__#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endifPUTCHAR_PROTOTYPE
{HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 0xFFFF);return ch;
}
/* USER CODE END 0 */

加入此语句之后可以在main函数中加入printf语句测试是否成功。

将精英板USB232口通过USB数据线与电脑连接,并在电脑上打开串口调试软件: 

 

 4.2完善tim.c

在tim.c中加入以下程序:

定义变量:

/* USER CODE BEGIN 0 */
//捕获状态
//[7]:0,没有成功的捕获;1,成功捕获到一次.
//[6]:0,还没捕获到低电平;1,已经捕获到低电平了.
//[5:0]:捕获低电平后溢出的次数
uint8_t  TIM5CH2_CAPTURE_STA=0;							//输入捕获状态		    				
uint16_t TIM5CH2_CAPTURE_VAL;							//输入捕获值(TIM2是16位)
/* USER CODE END 0 */

 在底部加入溢出回调函数和输入捕获回调函数。其中参考了正点原子官方的的输入 捕获回调函数。

/* USER CODE BEGIN 1 */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)//更新中断(溢出)发生时执行
{if((TIM5CH2_CAPTURE_STA&0X80) ==0)		//还未捕获成功{if(TIM5CH2_CAPTURE_STA&0X40)		//捕获到一个下降沿{if((TIM5CH2_CAPTURE_STA&0X3F)==0X3F)	//高电平时间太长了{TIM5CH2_CAPTURE_STA |= 0X80;	//标记成功捕获一次TIM5CH2_CAPTURE_VAL = 0XFFFF;	//}elseTIM5CH2_CAPTURE_STA++;			//否则标记溢出数加一}}}void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)//捕获中断发生时执行
{if((TIM5CH2_CAPTURE_STA&0x80)==0)	//还未捕获成功{if(TIM5CH2_CAPTURE_STA&0x40)	//成功捕获到一个下降沿{TIM5CH2_CAPTURE_STA |= 0X80;	//标记成功,捕获到一次高电平完成TIM5CH2_CAPTURE_VAL  = HAL_TIM_ReadCapturedValue(&htim5, TIM_CHANNEL_1);	//获取当前捕获值TIM_RESET_CAPTUREPOLARITY(&htim5, TIM_CHANNEL_1);			//清除原来设置TIM_SET_CAPTUREPOLARITY(&htim5, TIM_CHANNEL_1, TIM_ICPOLARITY_RISING);	//捕获到下降沿后,将捕获复位到捕获上升沿}else							//捕获到一个上升沿{TIM5CH2_CAPTURE_STA = 0;TIM5CH2_CAPTURE_VAL = 0;TIM5CH2_CAPTURE_STA |= 0x40;	//第六位标记为捕获到上升沿__HAL_TIM_DISABLE(&htim5);		//关闭定时器__HAL_TIM_SET_COUNTER(&htim5, 0);	//定时器初始值设置为0TIM_RESET_CAPTUREPOLARITY(&htim5, TIM_CHANNEL_1);TIM_SET_CAPTUREPOLARITY(&htim5, TIM_CHANNEL_1, TIM_ICPOLARITY_FALLING);	//捕获到上升沿之后,将捕获设置为下降沿__HAL_TIM_ENABLE(&htim5);}}
}
/* USER CODE END 1 */

4.3完善gpio.c 

模拟Trig脚,先置位,过40us后,复位。

/* USER CODE BEGIN 2 */
void CHL_capture(void)
{uint32_t i;HAL_GPIO_WritePin(TRIG_GPIO_Port, TRIG_Pin, GPIO_PIN_SET);for(i=0;i<72*40;i++)__NOP();HAL_GPIO_WritePin(TRIG_GPIO_Port, TRIG_Pin, GPIO_PIN_RESET);}
/* USER CODE END 2 */

4.4完善main函数 

int main(void)
{/* USER CODE BEGIN 1 */float len = 0;uint32_t time= 0;uint8_t count = 0;/* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_TIM5_Init();MX_USART1_UART_Init();/* USER CODE BEGIN 2 */printf("Hello World!\r\n");HAL_TIM_IC_Start_IT(&htim5,TIM_CHANNEL_1);   //开启TIM2的捕获通道2,并且开启捕获中断__HAL_TIM_ENABLE_IT(&htim5,TIM_IT_UPDATE);   //使能更新中断/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */HAL_Delay(100);CHL_capture();if(TIM5CH2_CAPTURE_STA & 0x80)	//成功捕获一个脉宽{time = TIM5CH2_CAPTURE_STA & 0x3F;	//获取溢出次数time *= 65536;		//获得溢出的时间值time += TIM5CH2_CAPTURE_VAL;	//加上最后一次取得的值len = time * 342.62*100/2000000;TIM5CH2_CAPTURE_STA = 0;}printf("LENGTH: %f CM\r\n", len);}/* USER CODE END 3 */
}

 5、总结

本文介绍了通过HAL库完成SR-04超声波传感器距离的测量。包括了,超声波传感器的原理、STM32CUBEMX的配置,以及程序的完善。最终的结果如下:

 

这篇关于手把手教你,通过HAL库实现STM32的超声波测距--以SR-04为例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/808964

相关文章

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

一份LLM资源清单围观技术大佬的日常;手把手教你在美国搭建「百万卡」AI数据中心;为啥大模型做不好简单的数学计算? | ShowMeAI日报

👀日报&周刊合集 | 🎡ShowMeAI官网 | 🧡 点赞关注评论拜托啦! 1. 为啥大模型做不好简单的数学计算?从大模型高考数学成绩不及格说起 司南评测体系 OpenCompass 选取 7 个大模型 (6 个开源模型+ GPT-4o),组织参与了 2024 年高考「新课标I卷」的语文、数学、英语考试,然后由经验丰富的判卷老师评判得分。 结果如上图所

零基础STM32单片机编程入门(一)初识STM32单片机

文章目录 一.概要二.单片机型号命名规则三.STM32F103系统架构四.STM32F103C8T6单片机启动流程五.STM32F103C8T6单片机主要外设资源六.编程过程中芯片数据手册的作用1.单片机外设资源情况2.STM32单片机内部框图3.STM32单片机管脚图4.STM32单片机每个管脚可配功能5.单片机功耗数据6.FALSH编程时间,擦写次数7.I/O高低电平电压表格8.外设接口

通过SSH隧道实现通过远程服务器上外网

搭建隧道 autossh -M 0 -f -D 1080 -C -N user1@remotehost##验证隧道是否生效,查看1080端口是否启动netstat -tuln | grep 1080## 测试ssh 隧道是否生效curl -x socks5h://127.0.0.1:1080 -I http://www.github.com 将autossh 设置为服务,隧道开机启动

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测 目录 时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测基本介绍程序设计参考资料 基本介绍 MATLAB实现LSTM时间序列未来多步预测-递归预测。LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为

vue项目集成CanvasEditor实现Word在线编辑器

CanvasEditor实现Word在线编辑器 官网文档:https://hufe.club/canvas-editor-docs/guide/schema.html 源码地址:https://github.com/Hufe921/canvas-editor 前提声明: 由于CanvasEditor目前不支持vue、react 等框架开箱即用版,所以需要我们去Git下载源码,拿到其中两个主

android一键分享功能部分实现

为什么叫做部分实现呢,其实是我只实现一部分的分享。如新浪微博,那还有没去实现的是微信分享。还有一部分奇怪的问题:我QQ分享跟QQ空间的分享功能,我都没配置key那些都是原本集成就有的key也可以实现分享,谁清楚的麻烦详解下。 实现分享功能我们可以去www.mob.com这个网站集成。免费的,而且还有短信验证功能。等这分享研究完后就研究下短信验证功能。 开始实现步骤(新浪分享,以下是本人自己实现

基于Springboot + vue 的抗疫物质管理系统的设计与实现

目录 📚 前言 📑摘要 📑系统流程 📚 系统架构设计 📚 数据库设计 📚 系统功能的具体实现    💬 系统登录注册 系统登录 登录界面   用户添加  💬 抗疫列表展示模块     区域信息管理 添加物资详情 抗疫物资列表展示 抗疫物资申请 抗疫物资审核 ✒️ 源码实现 💖 源码获取 😁 联系方式 📚 前言 📑博客主页:

探索蓝牙协议的奥秘:用ESP32实现高质量蓝牙音频传输

蓝牙(Bluetooth)是一种短距离无线通信技术,广泛应用于各种电子设备之间的数据传输。自1994年由爱立信公司首次提出以来,蓝牙技术已经经历了多个版本的更新和改进。本文将详细介绍蓝牙协议,并通过一个具体的项目——使用ESP32实现蓝牙音频传输,来展示蓝牙协议的实际应用及其优点。 蓝牙协议概述 蓝牙协议栈 蓝牙协议栈是蓝牙技术的核心,定义了蓝牙设备之间如何进行通信。蓝牙协议

python实现最简单循环神经网络(RNNs)

Recurrent Neural Networks(RNNs) 的模型: 上图中红色部分是输入向量。文本、单词、数据都是输入,在网络里都以向量的形式进行表示。 绿色部分是隐藏向量。是加工处理过程。 蓝色部分是输出向量。 python代码表示如下: rnn = RNN()y = rnn.step(x) # x为输入向量,y为输出向量 RNNs神经网络由神经元组成, python