操作系统原理请求分页系统中的置换算法

2024-03-14 13:08

本文主要是介绍操作系统原理请求分页系统中的置换算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、 题目要求
  • 二、程序功能及设计思路
  • 三、数据结构及算法设计
  • 四、程序运行情况
  • 五、遇到的困难及解决办法、实习心得或良好建议


一、 题目要求

1.通过如下方法产生一指令序列,共320条指令。
A. 在[1,32k-2]的指令地址之间随机选取一起点M,访问M;
B. 顺序访问M+1;
C. 在[0,M-1]中随机选取M1,访问M1;
D. 顺序访问M1+1;
E. 在[M1+2,32k-2]中随机选取M2,访问M2;
F. 顺序访问M2+1;
G. 重复 A—F,直到执行320次指令。
2. 指令序列变换成页地址流设:(1)页面大小为1K;
(2)用户虚存容量为32K。
3. 计算并输出下述各种算法在不同内存页块(页块个数范围:8-32)下的命中率。
A. 先进先出(FIFO)页面置换算法
B. 最近最久未使用(LRU)页面置换算法
C. 最佳(Optimal)页面置换算法
(命中率=1-页面失效次数/页地址流长度)

二、程序功能及设计思路

程序功能:能随机产生指令序列,并实现三种置换算法。
设计思路:指令序列通过srand函数生成种子实现。
先进先出(FIFO)页面置换算法,比较简单,如果当前页块中没有当前调入的页面,则直接将最早进来的页面淘汰。通过vector自带的erase()和push_back()即可实现。
最近最久未使用(LRU)页面置换算法 ,需要将停留在页块中时间最久的页面淘汰。于是创建了一个PAGE结构体,结构体中含有页名和停留在页块中的时间两变量。每次添加新的页面时,停留在页块中的时间+1。如果添加的页面在页块中已经存在,则将该页面时间清零,否则则找出停留在页块中时间最大的页面,将其淘汰,添加新的页面。
最佳(Optimal)页面置换算法,该算法选择的被淘汰页面,将是以后永远不使用的,或许是在最长(未来)时间内不再被访问的页面,所以每次新的页面调入时,记录并比较停留在页块中页面再次调入页块的时间,选出时间最大的淘汰。

三、数据结构及算法设计

(1)设计:数据结构

页面描述

struct PAGE {int id;//页号int time;//自上次被访问以来所经历的时间t
};

(2)算法设计
产生指令序列

void generate() {int cnt = 0;srand(time(0));bool CF = 1;while (CF) {int M = rand() % max_add + 1;//在[1,32K-2]的指令地址之间随机选取一起点Mins[cnt++] = M;if (cnt >= N) { break; }ins[cnt++] = M + 1;//顺序访问M+1if (cnt >= N) { break; }int M1 = rand() % M;ins[cnt++] = M1;if (cnt >= N) { break; }ins[cnt++] = M1 + 1;//顺序访问M1+1if (cnt >= N) { break; }int M2 = rand() % (max_add - M1 - 1) + (M1 + 2);// 在[M1+2,32K-2]中随机选取M2ins[cnt++] = M2;if (cnt >= N)break;ins[cnt++] = M2 + 1;//顺序访问M2+1if (cnt >= N)break;}for (int i = 0; i < N; i++) {ins[i] = ins[i] / 1024;//得到页号}
}

先进先出(FIFO)页面置换算法

double FIFO(int page) {double hit_num = 0;double unhit_num = 0;vector<int>temp;for (int i = 0; i < page; i++) {temp.push_back(-1);}for (int i = 0; i < N; i++) {vector<int>::iterator it = find(temp.begin(), temp.end(), ins[i]);if (it == temp.end()) {temp.erase(temp.begin());temp.push_back(ins[i]);unhit_num++;}//未命中else {hit_num++;}}return 100 * (1 - unhit_num / N);
}

最近最久未使用(LRU)页面置换算法

double LRU(int page) {double hit_num = 0;double unhit_num = 0;vector<PAGE>temp;for (int i = 0; i < page; i++) {temp.push_back(PAGE{ -1,0 });}vector<PAGE>::iterator it;for (int i = 0; i < N; i++) {for (it = temp.begin(); it != temp.end(); it++) {it->time++;}bool flag = false;for (it = temp.begin(); it != temp.end(); it++) {if (it->id == ins[i]) {flag = true;it->time = 0;hit_num++;break;}   }if (!flag) {//找到一个最大的vector<node>::iterator max_it = temp.begin();for (it = temp.begin(); it != temp.end(); it++) {if (it->time > max_it->time) {max_it = it;}}temp.erase(max_it);unhit_num++;temp.push_back(node{ ins[i],0 });}}return 100 * (1 - unhit_num / N);
}

最佳(Optimal)页面置换算法

double OPT(int page) {vector<int>temp;double hit_num = 0;double unhit_num = 0;for (int i = 0; i < page; i++) {temp.push_back(-1);//初始化}for (int i = 0; i < N; i++) {vector<int>::iterator it = find(temp.begin(), temp.end(), ins[i]);if (it == temp.end()) {//如果没找到unhit_num++;int maxtime = -1;vector<int>::iterator ans;for (it = temp.begin(); it != temp.end(); it++) {int cur = 0x3f3f3f3f;for (int j = i + 1; j < N; j++) {if (ins[j] == *it) {cur = j;break;}}if (cur > maxtime) { //找到之后最长时间未使用的maxtime = cur;ans = it;}}temp.erase(ans);temp.push_back(ins[i]);}else {hit_num++;}}return 100*(1-unhit_num/N);
}

四、程序运行情况

在这里插入图片描述

五、遇到的困难及解决办法、实习心得或良好建议

遇到的困难:在计算命中率时总是出现不合理的结果,例如-1200,或者各种高于100的数字。
解决办法:将定义为全局变量的unhit_time当作局部变量放入三个算法中,并逐步调试发现LRU中unhit_time++的时机不对,应该放在erase()那一块。
实习心得:这次实验难度并不高,但是考查的是对三种置换算法的理解。我课堂上并没能好好掌握该部分知识点,通过反复阅读ppt和做相关例题,终于明白了各种置换算法的实现步骤,学习能力得到提高。

这篇关于操作系统原理请求分页系统中的置换算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/808521

相关文章

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

C#实现系统信息监控与获取功能

《C#实现系统信息监控与获取功能》在C#开发的众多应用场景中,获取系统信息以及监控用户操作有着广泛的用途,比如在系统性能优化工具中,需要实时读取CPU、GPU资源信息,本文将详细介绍如何使用C#来实现... 目录前言一、C# 监控键盘1. 原理与实现思路2. 代码实现二、读取 CPU、GPU 资源信息1.

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

2.1/5.1和7.1声道系统有什么区别? 音频声道的专业知识科普

《2.1/5.1和7.1声道系统有什么区别?音频声道的专业知识科普》当设置环绕声系统时,会遇到2.1、5.1、7.1、7.1.2、9.1等数字,当一遍又一遍地看到它们时,可能想知道它们是什... 想要把智能电视自带的音响升级成专业级的家庭影院系统吗?那么你将面临一个重要的选择——使用 2.1、5.1 还是

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制