OpenGL-贴纸方案

2024-03-13 20:04
文章标签 方案 opengl 贴纸

本文主要是介绍OpenGL-贴纸方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OpenGL-贴纸方案

普通贴纸(缩放、Z轴旋转、平移)

OpenGL环境说明

OpenGL渲染区域使用正交投影换算,正常OpenGL坐标是vertexData,这样的 Matrix.orthoM
进行换算

    //顶点坐标(原点为显示区域中心店)private final float[] vertexData  = {-1.0f, -1.0f,  //左下角1.0f, -1.0f,   //右下角-1.0f,  1.0f,  //左上角1.0f,  1.0f,   //右上角};
m_width=720;
m_height=1280Matrix.orthoM(matrix, 0, 0, m_width, m_height,0 , -1, 1);//坐标原点对应屏幕左上角private final float[] m_position = {0f, 0f,//左上角坐标720f,0f,///右上角坐标0f, 1280f, //左下角坐标720f, 1280f,//右下角坐标};

以上面的基础的渲染区域设置FBO的绘制区,进行贴纸绘制,对应的缩放、旋转、平移时候对矩阵的处理和顶点点位处理的方法说明m_position对应的是贴纸的坐标,m_materialRect对应的xy轴的坐标和宽高。

float[] m_materialRect={0f,0f,500f,500f};//x,y,w,h//坐标原点对应屏幕左上角private final float[] m_position = {0f, 0f,//左上角坐标500f, 0f,//右上角坐标0f, 500f, //左下角坐标500f, 500f,//右下角坐标};void processCommonRect() {if (m_locateType == Locate_Common_Rect && m_position) {float x = m_materialRect.origin.x * m_width;float y = m_materialRect.origin.y * m_height;Rect rect(x, y, m_materialRect.size.width, m_materialRect.size.height);m_matrix->identity();if (m_scale != 1.0f || (m_angle != 0.f && m_angle != 360.f)) {m_matrix->scale(m_scale);m_matrix->rotateZ(m_angle);// 纹理在屏幕上旋转,x 和 y 需要计算屏幕的比例,防止拉伸float screenRadio = m_height / m_width;float screenRadioFlip = 1.0f / screenRadio;float *m = (float *)m_matrix->get();m[0] *= screenRadio;m[4] *= screenRadio;m_matrix->scale(screenRadioFlip, 1, 1);if (m_offsetRect.size.width > 0 && m_offsetRect.size.height > 0) {float offsetX = m_offsetRect.origin.x - (0.5f - m_offsetRect.size.width / m_width * 0.5f);float offsetY = m_offsetRect.origin.y - (0.5f - m_offsetRect.size.height / m_height * 0.5f);rect.origin.x -= offsetX * m_width;rect.origin.y -= offsetY * m_height;m[12] = offsetX * 2.0f;m[13] = offsetY * 2.0f;} else {float centerX = (m_width - rect.size.width) * 0.5f;float centerY = (m_height - rect.size.height) * 0.5f;m[12] = (rect.origin.x - centerX) / m_width * 2.0f;m[13] = (rect.origin.y - centerY) / m_height * 2.0f;rect.origin.x = centerX;rect.origin.y = centerY;}}if(m_isCut){if(m_originalRect.size.width != 0 && m_originalRect.size.height != 0){m_texcoord[0].set(0, 0);if(1.0f*m_materialRect.size.width/m_originalRect.size.width < 1.0){m_texcoord[1].set(1.0f*m_materialRect.size.width/m_originalRect.size.width, 0);}else{m_texcoord[1].set(1.0,0);}m_texcoord[2].set(0, 1);if(1.0f*m_materialRect.size.width/m_originalRect.size.width < 1.0){m_texcoord[3].set(1.0f*m_materialRect.size.width/m_originalRect.size.width, 1);}else{m_texcoord[3].set(1.0, 1);}}else{m_texcoord[0].set(0, 0);m_texcoord[1].set(1, 0);m_texcoord[2].set(0, 1);m_texcoord[3].set(1, 1);}}m_position[0].set(rect.origin.x, rect.origin.y);m_position[1].set(rect.right(), rect.origin.y);m_position[2].set(rect.origin.x, rect.bottom());m_position[3].set(rect.right(), rect.bottom());}
}

代码解说:

        float x = m_materialRect.origin.x * m_width;float y = m_materialRect.origin.y * m_height;Rect rect(x, y, m_materialRect.size.width, m_materialRect.size.height);

m_materialRect.origin.xm_materialRect.origin.y分别是占m_width和m_height的比例,相乘就获取真实的x,y坐标值,然后保存到Rect。
m_matrix->identity();是矩阵的初始化, m_matrix->scale(m_scale);进行缩放, m_matrix->rotateZ(m_angle); 进行旋转.

            // 纹理在屏幕上旋转,x 和 y 需要计算屏幕的比例,防止拉伸float screenRadio = m_height / m_width;float screenRadioFlip = 1.0f / screenRadio;float *m = (float *)m_matrix->get();m[0] *= screenRadio;m[4] *= screenRadio;m_matrix->scale(screenRadioFlip, 1, 1);

上面的代码是对进行缩放后的再按屏幕(720,1280)比例进行再次矫正,防止拉伸,实际上的操作 m[0] *= screenRadio*screenRadioFlip; m[4] *= screenRadio*screenRadioFlip; 如果不理解可以查看缩放矩阵和Z轴旋转矩阵相乘

                float centerX = (m_width - rect.size.width) * 0.5f;float centerY = (m_height - rect.size.height) * 0.5f;m[12] = (rect.origin.x - centerX) / m_width * 2.0f;m[13] = (rect.origin.y - centerY) / m_height * 2.0f;rect.origin.x = centerX;rect.origin.y = centerY;
  1. float centerX = (m_width - rect.size.width) * 0.5f;:计算屏幕宽度减去矩形宽度后的一半,以此确定矩形在 x 轴上居中的位置。

  2. float centerY = (m_height - rect.size.height) * 0.5f;:计算屏幕高度减去矩形高度后的一半,以此确定矩形在 y 轴上居中的位置。

  3. m[12] = (rect.origin.x - centerX) / m_width * 2.0f;:这行代码的目的是根据矩形左上角的 x 坐标相对于屏幕中心点的偏移量来计算 x 轴的位移量。以下是具体步骤:

    • (rect.origin.x - centerX):计算矩形左上角 x 坐标和屏幕中心 x 坐标之间的偏移量。
    • / m_width:将得到的偏移量除以屏幕宽度,将其转换为比例,结果范围在 [-0.5, 0.5] 之间。
    • * 2.0f:最后乘以 2.0,将比例倍增,确保偏移量适合矩阵的变换范围。而归一化后的[-0.5, 0.5]范围不太适合用于这些变换。通过乘以2,可以使得矩阵的位移调整更加明显和精确[-0.1, 0.1]
  4. 这样计算出的结果将会被存储在矩阵 m_matrix 的第 12 个元素中,通常表示 x 轴的位移信息。

总的来说,这段代码用于根据矩形左上角与屏幕中心的偏移量,计算并设置矩阵的 x 方向位移,以便将矩形移动到屏幕的中心位置,从而实现在屏幕中心进行正确显示和定位。

Matrix4说明:

Matrix4& Matrix4::identity()
{m[0] = m[5] = m[10] = m[15] = 1.0f;m[1] = m[2] = m[3] = m[4] = m[6] = m[7] = m[8] = m[9] = m[11] = m[12] = m[13] = m[14] = 0.0f;return *this;
}Matrix4& Matrix4::rotateZ(float angle)
{angle *= DEG2RAD;float c = cosf(angle);float s = sinf(angle);float m0 = m[0], m1 = m[1], m2 = m[2],  m3 = m[3],m4 = m[4], m5 = m[5], m6 = m[6],  m7 = m[7];m[0] = m0 * c + m4 *-s;m[1] = m1 * c + m5 *-s;m[2] = m2 * c + m6 *-s;m[3] = m3 * c + m7 *-s;m[4] = m0 * s + m4 * c;m[5] = m1 * s + m5 * c;m[6] = m2 * s + m6 * c;m[7] = m3 * s + m7 * c;return *this;
}Matrix4& Matrix4::scale(float s)
{return scale(s, s, s);
}Matrix4& Matrix4::scale(float x, float y, float z)
{m[0] = m[0]*x;   m[1] = m[1]*x;   m[2] = m[2]*x;   m[3] = m[3]*x;m[4] = m[4]*y;   m[5] = m[5]*y;   m[6] = m[6]*y;   m[7] = m[7]*y;m[8] = m[8]*z;   m[9] = m[9]*z;   m[10]= m[10]*z;  m[11]= m[11]*z;return *this;
}

缩放转的矩阵等于:
在这里插入图片描述
沿Z轴旋转的矩阵等于:
在这里插入图片描述

计算重心坐标原理

已知三角形3顶点坐标A(x1,y1),B(x2,y2),C(x3,y3),求三角形ABC的面积的公式

写成一般形式如下:
设A(x1,y1),B(x2,y2),C(x3,y3)在坐标系中中顺序为三点按逆时针排列,对应的权重 ( weight1, weight2, weight3 )

weight1 + weight2 + weight3 = 1S=1/2[(x1y2-x2y1)+(x2y3-x3y2)+(x3y1-x1y3)]//分别计算三个点对总面积的贡献 这一步表示每个点在总面积中所占的比例。
S1 = S * weight1;
S2 = S * weight2;
S3 = S * weight3;
//计算加权平均的重心坐标 (xw, yw)xw = (S1 * x1 + S2 * x2 + S3 * x3) / S;yw = (S1 * y1 + S2 * y2 + S3 * y3) / S;

在这里插入图片描述

在重心坐标系中,三角形平面的任何一个点(x,y)都可以表示成三角形三个顶点的线性组合(系数分别是α β γ \alpha \beta \gammaαβγ,且满足这三个系数相加和为1)
在这里插入图片描述
获得三角形任意一点的重心坐标
在这里插入图片描述

人脸贴纸说明

1=weight1+weight2+weight3
p_index_1=44
weight1=-2.2564
p_index_2=38
weight2=1.6250
p_index_3=37
weight3=1.6314void processFace2DLocate()
{if (m_position == nullptr) {Rect rect = m_materialRect;rect.origin.x = (m_width - rect.size.width) * 0.5f;rect.origin.y = (m_height - rect.size.height) * 0.5f;// 更新数据int count = 4;m_position = new Vector2[count];m_position[0].set(rect.origin.x, rect.origin.y);m_position[1].set(rect.right(), rect.origin.y);m_position[2].set(rect.origin.x, rect.bottom());m_position[3].set(rect.right(), rect.bottom());m_texcoord = new Vector2[count];m_texcoord[0].set(0, 0);m_texcoord[1].set(1, 0);m_texcoord[2].set(0, 1);m_texcoord[3].set(1, 1);m_indexCount = 6;m_pointIndex = new unsigned short[m_indexCount]{0, 1, 2, 2, 1, 3};m_matrix = new Matrix4;}m_matrix->identity();Vector2* point106 = m_face->getPoint106();float screenRadio = m_height / m_width;float screenRadioFlip = 1.0f / screenRadio;float x_dis = std::fabs(point106[32].x - point106[0].x) * screenRadioFlip;float y_dis = std::fabs(point106[32].y - point106[0].y);// 标准人脸0\32之间的距离float standard_face_x = 475.0f / m_width;float standard_face_y = 0.0f;float scale = std::sqrt(x_dis * x_dis + y_dis * y_dis) / std::sqrt(standard_face_x * standard_face_x + standard_face_y * standard_face_y) * screenRadio;int index1 = m_2DLocateParam.p_index_1;float weight1 = m_2DLocateParam.p_weight_1;int index2 = m_2DLocateParam.p_index_2;float weight2 = m_2DLocateParam.p_weight_2;int index3 = m_2DLocateParam.p_index_3;float weight3 = m_2DLocateParam.p_weight_3;float _x1 = point106[index1].x;float _y1 = point106[index1].y;float _x2 = point106[index2].x;float _y2 = point106[index2].y;float _x3 = point106[index3].x;float _y3 = point106[index3].y;// 总面积float S = 0.5 * fabs((_x1 * _y2 - _x2 * _y1) + (_x2 * _y3 - _x3 * _y2) + (_x3 * _y1 - _x1 * _y3));// s_index1float S1 = S * weight1;// s_index2float S2 = S * weight2;// s_index3float S3 = S * weight3;float xw = (S1 * _x1 + S2 * _x2 + S3 * _x3) / S;float yw = (S1 * _y1 + S2 * _y2 + S3 * _y3) / S;m_matrix->scale(scale);m_matrix->rotate(m_face->getYaw() * 1.2, 0.0, 1.0, 0.0);m_matrix->rotate(m_face->getPitch() * 1.2, 1.0, 0.0, 0.0);m_matrix->rotate(m_face->getRoll(), 0.0, 0.0, 1.0);
//    printf("m_face->getRoll() = %f, %f, %f\n", 360 + m_face->getRoll(), m_face->getPitch(), m_face->getYaw());// 纹理在屏幕上旋转,x 和 y 需要计算屏幕的比例,防止拉伸float *m = (float *)m_matrix->get();m[0] *= screenRadio;m[4] *= screenRadio;m_matrix->scale(screenRadioFlip, 1, 1);m[12] = xw * 2.f - 1.f;m[13] = yw * 2.f - 1.f;
}

m_matrix 进行旋转变换,根据人脸的偏航角(yaw)、俯仰角(pitch)和横摆角(roll)来调整姿态。让我给您解释一下:

  1. m_matrix->rotate(m_face->getYaw() * 1.2, 0.0, 1.0, 0.0);

    • 这行代码根据人脸的偏航角(yaw)来进行绕 Y 轴旋转。
    • m_face->getYaw() 是获取人脸的偏航角度,乘以1.2用于增加旋转幅度。
    • 参数 (0.0, 1.0, 0.0) 表示围绕 Y 轴旋转。
  2. m_matrix->rotate(m_face->getPitch() * 1.2, 1.0, 0.0, 0.0);

    • 这行代码根据人脸的俯仰角(pitch)来进行绕 X 轴旋转。
    • m_face->getPitch() 是获取人脸的俯仰角度,乘以1.2用于增加旋转幅度。
    • 参数 (1.0, 0.0, 0.0) 表示围绕 X 轴旋转。
  3. m_matrix->rotate(m_face->getRoll(), 0.0, 0.0, 1.0);

    • 这行代码根据人脸的横摆角(roll)来进行绕 Z 轴旋转。
    • m_face->getRoll() 是获取人脸的横摆角度。
    • 参数 (0.0, 0.0, 1.0) 表示围绕 Z 轴旋转。

在这里插入图片描述

point106[32]和point106[0]分别是左右两边脸部两个点,下面代码为了计算脸部对屏幕上的缩放比例,std::sqrt(x_dis * x_dis + y_dis * y_dis) 计算了特征点索引为 0 和 32 之间的欧几里德距离。同时,std::sqrt(standard_face_x * standard_face_x + standard_face_y * standard_face_y) 则计算了标准人脸上 x 和 y 方向的长度与屏幕尺寸的比例之间的欧几里德距离。

 float x_dis = std::fabs(point106[32].x - point106[0].x) * screenRadioFlip;float y_dis = std::fabs(point106[32].y - point106[0].y);// 标准人脸0\32之间的距离float standard_face_x = 475.0f / m_width;float standard_face_y = 0.0f;float scale = std::sqrt(x_dis * x_dis + y_dis * y_dis) / std::sqrt(standard_face_x * standard_face_x + standard_face_y * standard_face_y) * screenRadio;

重心坐标值(xw,yw)在[0, 1]范围转化为[-1, 1] 范围,这个顶点坐标标准

   m[12] = xw * 2.f - 1.f;m[13] = yw * 2.f - 1.f;

这篇关于OpenGL-贴纸方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/806045

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

Android平台播放RTSP流的几种方案探究(VLC VS ExoPlayer VS SmartPlayer)

技术背景 好多开发者需要遴选Android平台RTSP直播播放器的时候,不知道如何选的好,本文针对常用的方案,做个大概的说明: 1. 使用VLC for Android VLC Media Player(VLC多媒体播放器),最初命名为VideoLAN客户端,是VideoLAN品牌产品,是VideoLAN计划的多媒体播放器。它支持众多音频与视频解码器及文件格式,并支持DVD影音光盘,VCD影

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

如何选择SDR无线图传方案

在开源软件定义无线电(SDR)领域,有几个项目提供了无线图传的解决方案。以下是一些开源SDR无线图传方案: 1. **OpenHD**:这是一个远程高清数字图像传输的开源解决方案,它使用SDR技术来实现高清视频的无线传输。OpenHD项目提供了一个完整的工具链,包括发射器和接收器的硬件设计以及相应的软件。 2. **USRP(Universal Software Radio Periphera

MyBatis 切换不同的类型数据库方案

下属案例例当前结合SpringBoot 配置进行讲解。 背景: 实现一个工程里面在部署阶段支持切换不同类型数据库支持。 方案一 数据源配置 关键代码(是什么数据库,该怎么配就怎么配) spring:datasource:name: test# 使用druid数据源type: com.alibaba.druid.pool.DruidDataSource# @需要修改 数据库连接及驱动u

一种改进的red5集群方案的应用、基于Red5服务器集群负载均衡调度算法研究

转自: 一种改进的red5集群方案的应用: http://wenku.baidu.com/link?url=jYQ1wNwHVBqJ-5XCYq0PRligp6Y5q6BYXyISUsF56My8DP8dc9CZ4pZvpPz1abxJn8fojMrL0IyfmMHStpvkotqC1RWlRMGnzVL1X4IPOa_  基于Red5服务器集群负载均衡调度算法研究 http://ww

家庭和学生用户笔记本电脑配置方案

2.6.1  家庭和学生用户笔记本电脑配置方案   2.6.1  家庭和学生用户笔记本电脑配置方案   普通家庭用户、学生用户主要用于上网、娱乐、学习等,这类用户要求笔记本电脑的各方面 功能比较均衡。在选购此类笔记本电脑时,主要考虑外观设计方面要比较时尚,而且性能上也要 够强,一些大型复杂的软件以及目前的主流游戏都要能够流畅地运行才行。   对于CPU方面,可以考虑目前主流的第二

【信创建设】信息系统信创建设整体技方案(word原件完整版)

信创,即“信息技术应用创新”。我国自主信息产业聚焦信息技术应用创新,旨在通过对IT硬件、软件等各个环节的重构,基于我国自有IT底层架构和标准,形成自有开放生态,从根本上解决本质安全问题,实现信息技术可掌控、可研究、可发展、可生产。信创发展是一项国家战略,也是当今形势下国家经济发展的新功能。信创产业发展已经成为各行各业数字化转型、提升产业链发展的关键。 软件全套资料部分文档清单: 工作安排任

OPENGL顶点数组, glDrawArrays,glDrawElements

顶点数组, glDrawArrays,glDrawElements  前两天接触OpenGL ES的时候发现里面没有了熟悉的glBegin(), glEnd(),glVertex3f()函数,取而代之的是glDrawArrays()。有问题问google,终于找到答案:因为OpenGL ES是针对嵌入式设备这些对性能要求比较高的平台,因此把很多影响性能的函数都去掉了,上述的几个函数都被移除了。接