必须掌握的八种排序(3-4)--简单选择排序,堆排序

2024-03-13 16:58

本文主要是介绍必须掌握的八种排序(3-4)--简单选择排序,堆排序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3、简单选择排序

(1)基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;

然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。

(2)理解图

这里写图片描述

这里写图片描述

第一次 : 08最小 和21交换位置
第二次: 除第一个位置的08外 16最小 和25交换位置
以此类推

(3)代码实现

    public static void selectSort(int[] a) {int position = 0;for (int i = 0; i < a.length; i++) {int j = i + 1;position = i;int temp = a[i];for (; j < a.length; j++) {if (a[j] < temp) {temp = a[j];position = j;}}a[position] = a[i];a[i] = temp;}for (int i = 0; i < a.length; i++)System.out.print(a[i] + "\t");}

4、堆排序

(1)基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。

堆的定义如下:具有n个元素的序列(h1,h2,…,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,…,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。

(2)实例:

初始序列:46,79,56,38,40,84

建堆:
这里写图片描述
交换,从堆中踢出最大数
这里写图片描述
剩余结点再建堆,再交换踢出最大数
这里写图片描述
依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。

(3)代码:

/*** 选择排序之堆排序:* * 1. 基本思想: 堆排序是一树形选择排序,在排序过程中,将R[1..N]看成是一颗完全二叉树的顺序存储结构,* 利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。* * 2. 堆的定义: N个元素的序列K1,K2,K3,...,Kn.称为堆,当且仅当该序列满足特性: Ki≤K2i Ki ≤K2i+1(1≤ I≤[N/2])* 堆实质上是满足如下性质的完全二叉树:树中任一非叶子结点的关键字均大于等于其孩子结点的关键字。例如序列10,15,56,25,30,70就是一个堆,* 它对应的完全二叉树如上图所示。这种堆中根结点(称为堆顶)的关键字最小,我们把它称为小根堆。* 反之,若完全二叉树中任一非叶子结点的关键字均大于等于其孩子的关键字,则称之为大根堆。* * 3.排序过程: 堆排序正是利用小根堆(或大根堆)来选取当前无序区中关键字小(或最大)的记录实现排序的。我们不妨利用大根堆来排序。每一趟排序的基本操作是:* 将当前无序区调整为一个大根堆* ,选取关键字最大的堆顶记录,将它和无序区中的最后一个记录交换。这样,正好和直接选择排序相反,有序区是在原记录区的尾部形成并逐步向前扩大到整个记录区。*/
public class HeapSort {/*** 排序算法的实现,对数组中指定的元素进行排序* * @param array*            待排序的数组* @param c*            比较器*/public void sort(Integer[] arr) {// 创建初始堆initialHeap(arr);/** 对初始堆进行循环,且从最后一个节点开始,直到树只有两个节点止 每轮循环后丢弃最后一个叶子节点,再看作一个新的树*/for (int i = arr.length; i >= 2; i--) {// 根节点与最后一个叶子节点交换位置,即数组中的第一个元素与最后一个元素互换swap(arr, 0, i - 1);// 交换后需要重新调整堆adjustNote(arr, 1, i - 1);}}/*** @param arr*            排序数组* @param c*            比较器*/private void initialHeap(Integer[] arr) {int lastBranchIndex = arr.length  / 2;// 最后一个非叶子节点// 对所有的非叶子节点进行循环 ,且从最后一个非叶子节点开始for (int i = lastBranchIndex; i >= 1; i--) {adjustNote(arr, i,  arr.length );}}/*** 调整节点顺序,从父、左右子节点三个节点中选择一个最大节点与父节点转换* * @param arr*            待排序数组* @param parentNodeIndex*            要调整的节点,与它的子节点一起进行调整* @param len*            树的节点数* @param c*            比较器*/private void adjustNote(Integer[] arr, int parentNodeIndex, int len) {int maxValueIndex = parentNodeIndex;// 如果有左子树,i * 2为左子树节点索引if (parentNodeIndex * 2 <= len) {// 如果父节点小于左子树时if ((arr[parentNodeIndex - 1].compareTo(arr[parentNodeIndex * 2 - 1])) < 0) {maxValueIndex = parentNodeIndex * 2;// 记录最大索引为左子节点索引}// 只有在有左子树的前提下才可能有右子树,再进一步断判是否有右子树if (parentNodeIndex * 2 + 1 <= len) {// 如果右子树比最大节点更大if ((arr[maxValueIndex - 1].compareTo(arr[(parentNodeIndex * 2 + 1) - 1])) < 0) {maxValueIndex = parentNodeIndex * 2 + 1;// 记录最大索引为右子节点索引}}}// 如果在父节点、左、右子节点三者中,最大节点不是父节点时需要交换,把最大的与父节点交换,创建大顶堆if (maxValueIndex != parentNodeIndex) {swap(arr, parentNodeIndex - 1, maxValueIndex - 1);// 交换后可能需要重建堆,原父节点可能需要继续下沉  因为交换后 maxValueIndex位置的值就不一定是三个节点中最大的了! if (maxValueIndex * 2 <= len) {// 是否有子节点,注,只需判断是否有左子树即可知道adjustNote(arr, maxValueIndex, len);}}}/*** 交换数组中的两个元素的位置* * @param array*            待交换的数组* @param i*            第一个元素* @param j*            第二个元素*/public void swap(Integer[] array, int i, int j) {if (i != j) {// 只有不是同一位置时才需交换Integer tmp = array[i];array[i] = array[j];array[j] = tmp;}}/*** 测试* * @param args*/public static void main(String[] args) {Integer[] a = { 6,9,0,4,5, 9, 1, 4, 2, 6, 3, 8, 0, 7, 0, -7, -1, 34 };HeapSort heapsort = new HeapSort();heapsort.sort(a);for (Integer arrValue : a) {System.out.print(arrValue + " ");}}}

最后 附一张自己的理解图
这里写图片描述

这篇关于必须掌握的八种排序(3-4)--简单选择排序,堆排序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/805548

相关文章

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案... 目录一、requests 库二、aiohttp 库三、requests 和 aiohttp 的比较四、requ

Python中lambda排序的六种方法

《Python中lambda排序的六种方法》本文主要介绍了Python中使用lambda函数进行排序的六种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录1.对单个变量进行排序2. 对多个变量进行排序3. 降序排列4. 单独降序1.对单个变量进行排序

使用IntelliJ IDEA创建简单的Java Web项目完整步骤

《使用IntelliJIDEA创建简单的JavaWeb项目完整步骤》:本文主要介绍如何使用IntelliJIDEA创建一个简单的JavaWeb项目,实现登录、注册和查看用户列表功能,使用Se... 目录前置准备项目功能实现步骤1. 创建项目2. 配置 Tomcat3. 项目文件结构4. 创建数据库和表5.

使用PyQt5编写一个简单的取色器

《使用PyQt5编写一个简单的取色器》:本文主要介绍PyQt5搭建的一个取色器,一共写了两款应用,一款使用快捷键捕获鼠标附近图像的RGB和16进制颜色编码,一款跟随鼠标刷新图像的RGB和16... 目录取色器1取色器2PyQt5搭建的一个取色器,一共写了两款应用,一款使用快捷键捕获鼠标附近图像的RGB和16

四种简单方法 轻松进入电脑主板 BIOS 或 UEFI 固件设置

《四种简单方法轻松进入电脑主板BIOS或UEFI固件设置》设置BIOS/UEFI是计算机维护和管理中的一项重要任务,它允许用户配置计算机的启动选项、硬件设置和其他关键参数,该怎么进入呢?下面... 随着计算机技术的发展,大多数主流 PC 和笔记本已经从传统 BIOS 转向了 UEFI 固件。很多时候,我们也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

基于Qt开发一个简单的OFD阅读器

《基于Qt开发一个简单的OFD阅读器》这篇文章主要为大家详细介绍了如何使用Qt框架开发一个功能强大且性能优异的OFD阅读器,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 目录摘要引言一、OFD文件格式解析二、文档结构解析三、页面渲染四、用户交互五、性能优化六、示例代码七、未来发展方向八、结论摘要

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int