基于Redis 的高并发抢红包程序是如何实现的

2024-03-13 13:58

本文主要是介绍基于Redis 的高并发抢红包程序是如何实现的,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

下面介绍一种基于redis的抢红包方案。
把原始的红包称为大红包,拆分后的红包称为小红包。
1.小红包预先生成,插到数据库里,红包对应的用户ID是null,红包生成算法如下:
预先生成所有的红包还是一个请求随机生成一个红包
简单来说,就是把一个大整数m分解(直接以“分为单位,如1元即100)分解成n个小整数的过程,小整数的范围是[min, max]。
最简单的思路,先保底,每个小红包保证有min,然后每个请求都随机生成一个0到(max-min)范围的整数,再加上min就是红包的钱数。
这个算法虽然简单,但是有一个弊端:最后生成的红包可能都是min钱数的。也就是说可能最后的红包都是0.01元的。
另一种方式是预先生成所有红包,这样就比较容易控制了。我选择的是预先生成所有的红包。
理想的红包生成算法:
理想的红包生成结果是平均值附近的红包比较多,大红包和小红包的数量比较少。
可以想像下,生成红包的数量的分布有点像正态分布。
那么如何实现这种平均线附近值比较多的要求呢?
就是要找到一种算法,可以提高平均值附近的概率。那么利用一种”膨胀“再”收缩“的方式来达到这种效果。
先平方,再生成平方范围内的随机数,再开方,那么概率就不再是平均的了。
2.每个大红包对应两个redis队列,一个是未消费红包队列,另一个是已消费红包队列。开始时,把未抢的小红包全放到未消费红包队列里。
未消费红包队列里是json字符串,如{userId:’789′, money:’300′}。
3.在redis中用一个map来过滤已抢到红包的用户。
4.抢红包时,先判断用户是否抢过红包,如果没有,则从未消费红包队列中取出一个小红包,再push到另一个已消费队列中,最后把用户ID放入去重的map中。
5.用一个单线程批量把已消费队列里的红包取出来,再批量update红包的用户ID到数据库里。
上面的流程是很清楚的,但是在第4步时,如果是用户快速点了两次,或者开了两个浏览器来抢红包,会不会有可能用户抢到了两个红包?
为了解决这个问题,采用了lua脚本方式,让第4步整个过程是原子性地执行。
下面是在redis上执行的Lua脚本:
-- 函数:尝试获得红包,如果成功,则返回json字符串,如果不成功,则返回空
-- 参数:红包队列名, 已消费的队列名,去重的Map名,用户ID
-- 返回值:nil 或者 json字符串,包含用户ID:userId,红包ID:id,红包金额:money
-- 如果用户已抢过红包,则返回nil
if redis.call('hexists', KEYS[3], KEYS[4]) ~= 0 then
  return nil
else
  -- 先取出一个小红包
  local hongBao = redis.call('rpop', KEYS[1]);
  if hongBao then
    local x = cjson.decode(hongBao);
    -- 加入用户ID信息
    x['userId'] = KEYS[4];
    local re = cjson.encode(x);
    -- 把用户ID放到去重的set里
    redis.call('hset', KEYS[3], KEYS[4], KEYS[4]);
    -- 把红包放到已消费队列里
    redis.call('lpush', KEYS[2], re);
    return re;
  end
end
return nil

下面是测试代码:
public class TestEval {
    static String host = "localhost";
    static int honBaoCount = 1_0_0000;
    static int threadCount = 20;
    static String hongBaoList = "hongBaoList";
    static String hongBaoConsumedList = "hongBaoConsumedList";
    static String hongBaoConsumedMap = "hongBaoConsumedMap";
    static Random random = new Random();
//  -- 函数:尝试获得红包,如果成功,则返回json字符串,如果不成功,则返回空
//  -- 参数:红包队列名, 已消费的队列名,去重的Map名,用户ID
//  -- 返回值:nil 或者 json字符串,包含用户ID:userId,红包ID:id,红包金额:money
    static String tryGetHongBaoscript = 
//          "local bConsumed = redis.call('hexists', KEYS[3], KEYS[4]);\n"
//          + "print('bConsumed:' ,bConsumed);\n"
            "if redis.call('hexists', KEYS[3], KEYS[4]) ~= 0 then\n"
            + "return nil\n"
            + "else\n"
            + "local hongBao = redis.call('rpop', KEYS[1]);\n"
//          + "print('hongBao:', hongBao);\n"
            + "if hongBao then\n"
            + "local x = cjson.decode(hongBao);\n"
            + "x['userId'] = KEYS[4];\n"
            + "local re = cjson.encode(x);\n"
            + "redis.call('hset', KEYS[3], KEYS[4], KEYS[4]);\n"
            + "redis.call('lpush', KEYS[2], re);\n"
            + "return re;\n"
            + "end\n"
            + "end\n"
            + "return nil";
    static StopWatch watch = new StopWatch();
 
    public static void main(String[] args) throws InterruptedException {
//      testEval();
        generateTestData();
        testTryGetHongBao();
    }
 
    static public void generateTestData() throws InterruptedException {
        Jedis jedis = new Jedis(host);
        jedis.flushAll();
        final CountDownLatch latch = new CountDownLatch(threadCount);
        for(int i = 0; i < threadCount; ++i) {
            final int temp = i;
            Thread thread = new Thread() {
                public void run() {
                    Jedis jedis = new Jedis(host);
                    int per = honBaoCount/threadCount;
                    JSONObject object = new JSONObject();
                    for(int j = temp * per; j < (temp+1) * per; j++) {
                        object.put("id", j);
                        object.put("money", j);
                        jedis.lpush(hongBaoList, object.toJSONString());
                    }
                    latch.countDown();
                }
            };
            thread.start();
        }
        latch.await();
    }
 
    static public void testTryGetHongBao() throws InterruptedException {
        final CountDownLatch latch = new CountDownLatch(threadCount);
        System.err.println("start:" + System.currentTimeMillis()/1000);
        watch.start();
        for(int i = 0; i < threadCount; ++i) {
            final int temp = i;
            Thread thread = new Thread() {
                public void run() {
                    Jedis jedis = new Jedis(host);
                    String sha = jedis.scriptLoad(tryGetHongBaoscript);
                    int j = honBaoCount/threadCount * temp;
                    while(true) {
                        Object object = jedis.eval(tryGetHongBaoscript, 4, hongBaoList, hongBaoConsumedList, hongBaoConsumedMap, "" + j);
                        j++;
                        if (object != null) {
//                          System.out.println("get hongBao:" + object);
                        }else {
                            //已经取完了
                            if(jedis.llen(hongBaoList) == 0)
                                break;
                        }
                    }
                    latch.countDown();
                }
            };
            thread.start();
        }
 
        latch.await();
        watch.stop();
 
        System.err.println("time:" + watch.getTotalTimeSeconds());
        System.err.println("speed:" + honBaoCount/watch.getTotalTimeSeconds());
        System.err.println("end:" + System.currentTimeMillis()/1000);
    }
}

测试结果20个线程,每秒可以抢2.5万个,足以应付绝大部分的抢红包场景。
如果是真的应付不了,拆分到几个redis集群里,或者改为批量抢红包,也足够应付。
redis的抢红包方案,虽然在极端情况下(即redis挂掉)会丢失一秒的数据,但是却是一个扩展性很强,足以应付高并发的抢红包方案。

这篇关于基于Redis 的高并发抢红包程序是如何实现的的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/805108

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义