【AI选股】如何通过python调用wencai包实现AI选股(请移步新文章)

2024-03-13 09:40

本文主要是介绍【AI选股】如何通过python调用wencai包实现AI选股(请移步新文章),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如何通过python调用wencai包实现AI选股

  • 请移步:[通过pywencai访问同花顺问财接口实现智能选股](http://t.csdn.cn/LIiWO)
  • 前言
  • 一、wencai问财如何实现AI选股?
    • 1.实用基础篇(wencai选股函数与使用方法)
    • 2.进阶发挥篇(附可转债数据处理演示)
    • 3.数据分析篇(调节参数分析数据背后的数据)
  • 总结


请移步:通过pywencai访问同花顺问财接口实现智能选股

前言

i问财是同花顺旗下专业的机器人智能选股问答平台,致力于为投资者提供宏观数据、新闻资讯、A股、港美股、新三板、基金等各类方案。wencai是i问财的策略回测接口的Pythonic工具包,满足量化爱好者和数据分析师在量化方面的需求。


提示:以下是本篇文章正文内容,下面案例仅供参考

一、wencai问财如何实现AI选股?

1.实用基础篇(wencai选股函数与使用方法)

注意:由于近期接口地址有变动,pip安装或升级完毕,需要按如下替换步骤更新后方可使用如下代码,否则将无法访问到数据,或者程序接口会报错。(如无法访问,详见http://t.csdn.cn/nVWS7)

=导入问财包=
安装:pip install wencai
升级:pip install wencai --upgrade
替换:将我的压缩包解压,覆盖python安装目录下Lib\site-packages\下的wencai目录。(个别地址和函数有修改,修改后才可以使用wencai及更好的使用问财)

将以下代码保存为文件:wencai_xg.py

# -*- coding: utf-8 -*-# 文件名:wencai_xg.py
import wencai as wc
# 若需中文字段则cn_col=True,chromedriver路径不在根目录下需指定execute_path
wc.set_variable(cn_col=True)def xg_wencai(query,perpage=20):'''功能:调用问财接口筛选股票参数:query查询条件,perpage反馈的条目数'''import wencai as wc# 若需中文字段则cn_col=True,chromedriver路径不在根目录下需指定execute_pathwc.set_variable(cn_col=True)r = wc.search(query,perpage)return r.round(3)if __name__ == '__main__':# 实用基础篇if 1:# 选股条件query = '非st;非停牌;股价大于5元;流通市值50亿到750亿;股价突破444日均线;'# 控制一次最多选多少支股票perpage = 10df = xg_wencai(query,perpage)print(df)# df_table(df,query)# 写入EXCEL文件df.to_excel("xg_wencai.xlsx", encoding="utf8")# 有人说我只要股票代码code_list = df['股票代码'].values.tolist()# 取5只股票代码print(code_list[0:5]) 

注:query 是选股的口语化条件说梦,使用中文分号间隔。也可以在问财的网页段先试试,看看别人都是怎么写的条件。

引用方法:将以上文件保存到wencai_xg.py,在同目录调用使用如下方法即可。

from wencai_xg import xg_wencai
query = '非st;非停牌;股价大于5元;流通市值50亿到750亿;股价突破444日均线;'
perpage = 10
df = xg_wencai(query,perpage)

对于大多数情况,只要学会修改query 条件,即可实现AI选股。

2.进阶发挥篇(附可转债数据处理演示)

2.1 进阶相对就复杂了一些,入股只是选股,入门的内容已经足够用。进阶增加了一些美化输出和数据处理的内容,给大家示例以下数据如何加工处理,并列举可转债相关数据处理。运行那段就将if后的0改为1即可。
文件名:wencai_xg.py

# -*- coding: utf-8 -*-
import pandas as pd
import os
# 在当前目录下生成wencai目录,写入EXCEL文件放在该目录
BASEDIR=os.path.dirname(os.path.realpath(__file__))+'/wencai/'
# 如果目录不存在则新建该目录
if not os.path.exists(BASEDIR):os.makedirs(BASEDIR)# ===============表格美化输出===============
def df_table(df,index):import prettytable as pt#利用prettytable对输出结果进行美化,index为索引列名:df_table(df,'market')tb = pt.PrettyTable()df = df.reset_index(drop = True)tb.add_column(index,df.index)for col in df.columns.values:#df.columns.values的意思是获取列的名称tb.add_column(col, df[col])print(tb)# ===============导入问财包===============
# 安装:pip install wencai
# 升级:pip install wencai --upgrade
# 替换:将我的压缩包解压,覆盖python安装目录下Lib\site-packages\下的wencai目录。(个别地址和函数有修改,修改后才可以使用wencai及更好的使用问财)import wencai as wc
# 若需中文字段则cn_col=True,chromedriver路径不在根目录下需指定execute_path
wc.set_variable(cn_col=True)def xg_wencai(query,perpage=20):'''功能:调用问财接口筛选股票参数:query查询条件,perpage反馈的条目数'''import wencai as wc# 若需中文字段则cn_col=True,chromedriver路径不在根目录下需指定execute_pathwc.set_variable(cn_col=True)r = wc.search(query,perpage)return r.round(3)if __name__ == '__main__':# 实用基础篇if 0:# 选股条件query = '非st;非停牌;股价大于5元;流通市值50亿到750亿;股价突破444日均线;'# 控制一次最多选多少支股票perpage = 10df = xg_wencai(query,perpage)# print(df)df_table(df,query)# 写入EXCEL文件df.to_excel("xg_wencai.xlsx", encoding="utf8")# 进阶发挥篇if 1:query='人气排名'# 查询最近的热门股query='可转债概念 特高压'# 查询特高压相关概念的可转债df = wc.search(query,perpage=20)df = df.apply(pd.to_numeric, errors='ignore')print(df)# 以下三行,某些条件筛选后不包含该列信息,则会报错,将列注释掉即可。df = df.drop('所属概念',axis=1) df['正股价-转股价'] = round((df['最新价'] - df['未清偿可转债转股价格']),2)df['正股较转股价溢出率'] = round(df['正股价-转股价']/df['未清偿可转债转股价格'],2)df_table(df,query)df.to_excel(BASEDIR+"wencai_search2.xlsx", encoding="utf8")

3.数据分析篇(调节参数分析数据背后的数据)

此处列举了几种数据统计的方法,具体数据意义大家一块研究。要执行代码,只需要将以下代码复制在进阶篇后面,运行那段就将if后的0改为1即可。

    if 0:'''策略回测,周期内的涨幅'''query='中证1000,30日涨幅小于10%,股价在30日均线上,沪深主板;市盈率小于20,市值从小到大排列;'start_date='2021-01-01'end_date='2022-08-30'period='4'transaction = wc.get_strategy(query=query,start_date=start_date,end_date=end_date,period=period,fall_income=1,lower_income=5,upper_income=9,day_buy_stock_num=3,stock_hold=5)r = transaction.history_pick(trade_date='2020-08-05', hold_num=10)df = r.round(3)df_table(df,'get_strategy')df.to_excel(BASEDIR+"wencai_get_strategy.xlsx", encoding="utf8")if 0:'''获取策略报告'''query='非停牌;非st;今日振幅小于5%;量比小于1;涨跌幅大于-5%小于1%;流通市值小于20亿;市盈率大于25小于80;主力控盘比例从大到小'start_date='2022-01-01'end_date='2022-08-05'period='1'r = wc.get_strategy(query=query,start_date=start_date,end_date=end_date,period=period,fall_income=1,lower_income=5,upper_income=9,day_buy_stock_num=1,stock_hold=2)print(r.profit_data) # 累计收益数据print(r.backtest_data) # 报告评级print(r.condition_data) # 准确回测语句print(r.history_detail(period='1')) # 历史明细查询print(r.history_pick(trade_date='2022-08-03', hold_num=1)) # 策略选股df_table(r.profit_data,'profit_data')df_table(r.history_pick(trade_date='2022-08-03', hold_num=1),'history_pick')if 1:'''获取回测分析'''query='非st;非停牌;周线MACD红柱上移;日线j小于-10'start_date='2022-01-01'end_date='2022-08-06'period='1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16' #设置多个K线范围,可分别观察这些股票在不同交易区间的涨跌幅print('query:',query,'\nstart_date',start_date,'end_date',end_date,'period',period)r = wc.get_scrape_report(query=query,start_date=start_date,end_date=end_date,period=period,benchmark='1A0001')print(r.report_data) # 报告评级print(r.backtest_data)	# 回测分析print(r.condition_data)  # 准确回测参数print(r.history_detail(period='1')) # 历史明细查询                                 # 检查5天的收益情况,修改nn = 5df = r.history_detail(period=str(n))df = df.round(3)# print(df)df_table(df,'get_scrape_report')df.to_excel(BASEDIR+"wencai_get_scrape_report.xlsx", encoding="utf8")

总结

首先,感谢同花顺i问财给我们提供了这么好的智能化工具。它使用很快捷,可以节省收集资料的时间,还给出你历史统计数据。i问财的答案简单明了,没有太多的主观色彩,是一个便捷客观的选股软件。另外同花顺提供的BackTest量化策略平台也很不错,这里有一个非常简单有效的历史统计工具,它主要有三个板块:回测预测,策略分析,事件回测。需要的人可以常去打卡访问。
在这里插入图片描述
其次,要感谢wencai的开发者。wencai是i问财的策略回测接口的Pythonic工具包,满足量化爱好者和数据分析师在量化方面的需求。
软件仓库:https://github.com/GraySilver/wencai

对问财的应用,个人也只是摸了个皮毛,但数据处理的基础框架已为各位奉上,希望能帮到大家。代码个人都测试过。如有人运行报错,请仔细检查开头的要求。再有问题,可在评论中留言。

最后,再次感谢同花顺和wencai包的开发者。大家也且用且珍惜吧。

这篇关于【AI选股】如何通过python调用wencai包实现AI选股(请移步新文章)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/804426

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(