算法打卡day15|二叉树篇04|110.平衡二叉树、257. 二叉树的所有路径、404.左叶子之和

2024-03-13 08:20

本文主要是介绍算法打卡day15|二叉树篇04|110.平衡二叉树、257. 二叉树的所有路径、404.左叶子之和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 算法题

Leetcode  110.平衡二叉树

题目链接:110.平衡二叉树

大佬视频讲解:平衡二叉树视频讲解

个人思路

可以用递归法,计算左右子树的高度差,当超过1时就不为平衡二叉树了;

解法

回顾一下二叉树节点的深度与高度;

  • 二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数。
  • 二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数。

在leetcode中深度从1开始的,有些地方从0开始;

递归法

类似于二叉树的后序遍历,即对于当前遍历到的节点:先递归地判断其左右子树是否平
衡,
再判断以当前节点为根的子树是否平衡。如果一棵子树是平衡的,则返回其高度(高度一定
是非负整数),否则返回 -1。如果存在一棵子树不平衡,则整个二叉树一定不平衡。

如果是用前序遍历,则对于同一个节点,函数 getHeight 会被重复调用,导致时间复杂
度较高。如果使用后序遍历的做法,则对于每个节点,函数 height 只会被调用一次。

也可以这样记忆,当树节点高度与深度不同时,求深度可以从上到下去查 所以需要前序遍历(中左右),而高度只能从下到上去查,所以只能后序遍历(左右中)

class Solution {public boolean isBalanced(TreeNode root) {//1.确定递归函数参数以及返回值return getHeight(root) != -1;//判断是否为平衡二叉树}private int getHeight(TreeNode root) {if (root == null) {//根;前序遍历,先遍历根;return 0;}//3.确定单层递归逻辑int leftHeight = getHeight(root.left);//左if (leftHeight == -1) {return -1;}int rightHeight = getHeight(root.right);//右if (rightHeight == -1) {return -1;}// 左右子树高度差大于1,return -1表示已经不是平衡树了if (Math.abs(leftHeight - rightHeight) > 1) {//2.确定递归终止条件return -1;}return Math.max(leftHeight, rightHeight) + 1;}
}

时间复杂度:O(n);(遍历整棵树)

空间复杂度:O(n);(使用二叉树)

迭代法

来模拟后序遍历,遍历每一个节点的时候,再去判断左右孩子的高度是否符合,其中利用TreeNode.val来保存当前结点的高度,这样就不会有重复遍历;

class Solution {public boolean isBalanced(TreeNode root) {if (root == null) {return true;}Stack<TreeNode> stack = new Stack<>();TreeNode pre = null;while (root != null || !stack.isEmpty()) {while (root != null) {stack.push(root);root = root.left;}TreeNode inNode = stack.peek();// 右结点为null或已经遍历过if (inNode.right == null || inNode.right == pre) {// 输出if (Math.abs(getHeight(inNode.left) - getHeight(inNode.right)) > 1) {return false;}stack.pop();pre = inNode;root = null;// 当前结点下,没有要遍历的结点了} else {root = inNode.right;// 右结点还没遍历,遍历右结点}}return true;}// 求结点的高度public int getHeight(TreeNode root) {if (root == null) {return 0;}int leftHeight = root.left != null ? root.left.val : 0;int rightHeight = root.right != null ? root.right.val : 0;int height = Math.max(leftHeight, rightHeight) + 1;root.val = height;// 用TreeNode.val来保存当前结点的高度return height;}
}

时间复杂度:O(n);(遍历整棵树)

空间复杂度:O(n);(一个栈的空间,最差情况下与树的空间一样,那就是n)


Leetcode 257. 二叉树的所有路径

题目链接:257. 二叉树的所有路径

大佬视频讲解:二叉树的所有路径视频讲解

个人思路

就知道好像是用回溯,但不记得怎么实现了

解法
递归法

要求从根节点到叶子的路径,所以需要前序遍历,这样才方便让父节点指向孩子节点,找到对应的路径,因为要返回根到叶子结点的路径,所以肯定是需要回溯的,递归和回溯就是一家的;

因为是要记录到叶子节点的路径,所以左右孩子为空则为终止条件,到遍历到叶子节点,则将结果打印放入数组,然后回溯继续递归;

在写代码时,要记住回溯和递归是一一对应的,有一个递归,就要有一个回溯

class Solution {public List<String> binaryTreePaths(TreeNode root) {//1.确定递归函数参数以及返回值List<String> res = new ArrayList<>();// 存最终的结果if (root == null) {return res;}List<Integer> paths = new ArrayList<>();// 作为结果中的路径traversal(root, paths, res);return res;}private void traversal(TreeNode root, List<Integer> paths, List<String> res) {paths.add(root.val);// 前序遍历,中// 遇到叶子结点if (root.left == null && root.right == null) {//2.确定递归终止条件// 输出StringBuilder sb = new StringBuilder();// StringBuilder用来拼接字符串for (int i = 0; i < paths.size() - 1; i++) {sb.append(paths.get(i)).append("->");}sb.append(paths.get(paths.size() - 1));// 记录最后一个节点res.add(sb.toString());// 收集一个路径return;}//3.确定单层递归逻辑// 递归和回溯是同时进行,所以要放在同一个花括号里if (root.left != null) { // 左traversal(root.left, paths, res);//有一个递归,就要有一个回溯paths.remove(paths.size() - 1);// 回溯}if (root.right != null) { // 右traversal(root.right, paths, res);//有一个递归,就要有一个回溯paths.remove(paths.size() - 1);// 回溯}}
}

时间复杂度:O(n^2);(每遍历一条路径都要拷贝数据,高度乘节点,所以是n*n)

空间复杂度:O(n^2);(递归遍历暂存字符与结果,都需要空间)

迭代法

使用前序遍历的迭代方式来模拟遍历路径的过程


class Solution {public List<String> binaryTreePaths(TreeNode root) {List<String> result = new ArrayList<>();if (root == null)return result;Stack<Object> stack = new Stack<>();// 节点和路径同时入栈stack.push(root);stack.push(root.val + "");while (!stack.isEmpty()) {// 节点和路径同时出栈String path = (String) stack.pop();TreeNode node = (TreeNode) stack.pop();// 若找到叶子节点if (node.left == null && node.right == null) {result.add(path);}//右子节点不为空if (node.right != null) {stack.push(node.right);stack.push(path + "->" + node.right.val);}//左子节点不为空if (node.left != null) {stack.push(node.left);stack.push(path + "->" + node.left.val);}}return result;}
}

时间复杂度:O(n^2);(每遍历一条路径都要拷贝数据)

空间复杂度:O(n);(使用两个栈,一个存数据,一个遍历)


Leetcode 404.左叶子之和

题目链接:404.左叶子之和

大佬视频讲解:左叶子之和视频讲解

个人思路

可以用层序遍历,遍历到最后一层时,将左叶子筛选出来,结果值累加;

解法
递归法

递归的遍历顺序为后序遍历(左右中),是因为要通过递归函数的返回值来累加求取左叶子数值之和。

递归三部曲

1.确定递归函数的参数和返回值

判断一个树的左叶子节点之和,那么一定要传入树的根节点,递归函数的返回值为数值之和,所以为int

2.确定终止条件

如果遍历到空节点,那么左叶子值一定是0

注意,只有当前遍历的节点是父节点才能判断其子节点是不是左叶子。 所以如果当前遍历的节点是叶子节点,那其左叶子也必定是0:

3.确定单层递归的逻辑

当遇到左叶子节点的时候,记录数值,然后通过递归求取左子树左叶子之和,和 右子树左叶子之和,相加便是整个树的左叶子之和。

class Solution {public int sumOfLeftLeaves(TreeNode root) {if (root == null) return 0;int leftValue = sumOfLeftLeaves(root.left);    // 左int rightValue = sumOfLeftLeaves(root.right);  // 右int midValue = 0;//判断是否为左叶子节点if (root.left != null && root.left.left == null && root.left.right == null) { midValue = root.left.val;}int sum = midValue + leftValue + rightValue;  // 中return sum;}
}

时间复杂度:O(n);(遍历二叉树)

空间复杂度:O(n);(递归栈)

迭代法

层序遍历迭代法,采用前序遍历,在模板代码的基础上判断当前节点的子节点是否左叶子,并累加值;

class Solution {public int sumOfLeftLeaves(TreeNode root) {int sum = 0;//左叶子节点和if (root == null) return 0;Queue<TreeNode> queue = new LinkedList<>();queue.offer(root);while (!queue.isEmpty()) {int size = queue.size();while (size -- > 0) {TreeNode node = queue.poll();//判断是否为左叶子节点if (node.left != null) { // 左节点不为空queue.offer(node.left);if (node.left.left == null && node.left.right == null){ // 左叶子节点sum += node.left.val;}}if (node.right != null) queue.offer(node.right);}}return sum;}
}

时间复杂度:O(n);(遍历二叉树)

空间复杂度:O(n);(使用队列)

以上是个人的思考反思与总结,若只想根据系列题刷,参考卡哥的网址代码随想录算法官网代码随想录算法官网代码随想录算法官网

这篇关于算法打卡day15|二叉树篇04|110.平衡二叉树、257. 二叉树的所有路径、404.左叶子之和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/804218

相关文章

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

通过C#获取PDF中指定文本或所有文本的字体信息

《通过C#获取PDF中指定文本或所有文本的字体信息》在设计和出版行业中,字体的选择和使用对最终作品的质量有着重要影响,然而,有时我们可能会遇到包含未知字体的PDF文件,这使得我们无法准确地复制或修改文... 目录引言C# 获取PDF中指定文本的字体信息C# 获取PDF文档中用到的所有字体信息引言在设计和出

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

python获取当前文件和目录路径的方法详解

《python获取当前文件和目录路径的方法详解》:本文主要介绍Python中获取当前文件路径和目录的方法,包括使用__file__关键字、os.path.abspath、os.path.realp... 目录1、获取当前文件路径2、获取当前文件所在目录3、os.path.abspath和os.path.re

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i