多模态大模型Claude 3正式接入集简云与语聚!对标GPT-4且支持中文

本文主要是介绍多模态大模型Claude 3正式接入集简云与语聚!对标GPT-4且支持中文,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

自OpenAI发布GPT-4以来,引发了业务模式与应用使用的巨大变革,掀起了各大企业对于多模态大模型的研究热潮。3月初,AnthropicClaude在官网正式发布Claude 3系列多模态大模型,据了解,该模型在多个维度上超越了GPT-4,为您总结一波Claude 3的部分能力提升:

  • OCR和复杂场景解析方面提升;
  • 解决高级数学和科学问题的能力增强;
  • 轻松处理多语言文本;
  • 可处理超过一百万个令牌的输入;
  • 遵循具体指令完成创造性任务能力提升。

claude 3分为Haiku、Sonnet和Opus三个版本,目前集简云已将Opus和Sonnet快速上线至平台内,旨在为用户提供更高效、更智能的AI体验。

性能显著提升,对标GPT-4

Opus版本在包括专家推理、基础数学、代码等领域的性能评估中超越了GPT-4。Sonnet版本在知识检索任务上表现更胜一筹,不仅可以平衡处理速度和计算效率,同时兼顾经济性,在需要大规模部署的企业级应用场景中具有优势。

各版本模型均支持达20万tokens的上下文窗口,并为特定用户提供高达100万tokens的支持,有助于更好地理解和记忆长文本信息。

视觉能力更突出

Claude 3 擅长复杂视觉功能,他们可以处理各种视觉格式,包括照片、图表、图形和技术图表。比如一些客户的知识库各种格式排版,例如 PDF、流程图或演示幻灯片。

推理能力更好,智商更高

直接上传数学、物理等考验逻辑和准确度的理科题照片,或者细节丰富的图表,由于推理能力大幅增强,它回复的解题水平和准确率变高很多,并能在一些细节描述上比GPT-4更胜一筹。

准确性更高

为了减少幻觉问题,Anthropic将答案分为正确答案、错误答案(或幻觉)和承认不确定性,如果不知道,模型表示它不知道答案,而不是提供不正确的信息。与 Claude 2.1 相比,Opus 在这些具有挑战性的开放式问题上的准确性(或正确答案)提高了一倍,同时也减少了错误答案的水平。

使用示例

示例1:

这张示意图是什么意思?有哪些专业名词?请详细解释

这张图是关于基于LoRa无线网络的车位状态监测系统架构图,其中涉及到以下一些专业名词:
LoRa(Long Range): 一种低功耗广域网络(LPWAN)技术,适用于远距离、低速率、低功耗的物联网应用。
Web发布服务器: 用于发布和管理车位状态监测系统的Web应用服务器。
应用服务器: 接收并处理来自LoRa网关的车位状态数据,并将数据传输给Web发布服务器。
2G/3G/4G运营商网络: 移动通信网络,用于LoRa网关与应用服务器之间的数据传输。
LoRa网关: 将多个LoRa设备(即车位探测器)采集的数据汇聚,并通过2G/3G/4G网络将数据传输至应用服务器。
中口线: 一种无线通信中的概念,表示LoRa设备与LoRa网关之间的无线连接。
LoRa设备/车位探测器: 安装在每个车位上,通过LoRa无线技术实时监测车位状态(占用或空闲)并将数据传输至LoRa网关。
整个系统的工作流程如下:
LoRa车位探测器采集车位状态数据
探测器通过LoRa无线技术将数据传输至LoRa网关
网关通过2G/3G/4G网络将汇聚的数据传输至应用服务器
应用服务器处理数据后传输给Web发布服务器
用户通过Web发布服务器提供的应用程序查询车位状态信息

示例2:

2.1 解出该图中的两道题:

根据题目条件,解答如下:
(1) 物体到C点时的速度
设物体到C点的时间为t,由匀加速直线运动的速度公式v=v0+at,代入已知条件得:
v = 0 + 0.25t
物体运动的距离AC是:
AC = v0t + 1/2at^2 = 1/2 × 0.25t^2 = 0.125t^2
AC已知为1kg,即1000g的小物体压缩弹簧的长度0.5m,由胡克定律F=kx得:
1 × 10 = k × 0.5
解得弹簧劲度系数k=20N/m
由动能定理,小物体对弹簧做的功等于物体动能的增加,即:
1/2kx^2 = 1/2mv^2
代入数据:
1/2 × 20 × 0.5^2 = 1/2 × 1 × v^2
解得v = 2.24m/s,为物体到达C点时的速度
(2) 弹簧对物体做的功
将(1)中求出的速度代入x=vt-1/2at^2,其中x就是物体压缩弹簧的距离,t是物体做减速运动的时间,a是减速度0.25
解得x=0.125m
所以弹簧对物体做的功是:
W = 1/2kx^2 = 1/2 × 20 × 0.125^2 = 0.156J

2.2 解释补集法的概念,并用补集法计算这道概率题:"一家公司有两个部门,A部门3个男生,2个女生,B部门4个男生,6个女生,现在要派3个人去出差,要求每个部门至少出一人,那么至少有一个女生被派出的概率是多少?"

好的,下面我就解释补集法的概念并用补集法求解这道概率题。
补集法的概念:
设A是样本空间的一个事件,它的补集记为A',由样本空间中不属于A的样本点组成。根据补集法,P(A)=1-P(A')。
这个公式的意思是:事件A发生的概率,等于1减去事件A不发生的概率。补集法常用于求解"至少""不超过"等问题。
用补集法求解题目中的概率问题:
设至少有一个女生被派出的事件为A,那么A的补集A'就是所派出的3人全部是男生。
总的选派方案数为从15人(3+2+4+6)中选出3人,共有C(15,3)=455种
事件A'的方案数是从7个男生(3+4)中选3人,共有C(7,3)=35种
事件A的概率P(A)=1-P(A')=1-35/455=420/455=84/91≈92.31%
所以至少有一个女生被派出的概率是84/91,约为92.31%。

示例3:请把这个UI用代码还原出来

如何在集简云/语聚中使用

方式1:在数据流程搭建时选择Claude付费版 (无需账户),在所有动作中都已支持Claude 3模型Opus和Sonnet版本的使用。

方式2: 语聚AI(http://chat.jijyun.cn)的对话助手中。

这篇关于多模态大模型Claude 3正式接入集简云与语聚!对标GPT-4且支持中文的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/804179

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

4B参数秒杀GPT-3.5:MiniCPM 3.0惊艳登场!

​ 面壁智能 在 AI 的世界里,总有那么几个时刻让人惊叹不已。面壁智能推出的 MiniCPM 3.0,这个仅有4B参数的"小钢炮",正在以惊人的实力挑战着 GPT-3.5 这个曾经的AI巨人。 MiniCPM 3.0 MiniCPM 3.0 MiniCPM 3.0 目前的主要功能有: 长上下文功能:原生支持 32k 上下文长度,性能完美。我们引入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU