赛前指导:第二届未来飞行器挑战赛实践赛道之技术详解

本文主要是介绍赛前指导:第二届未来飞行器挑战赛实践赛道之技术详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2022(第二届)四川省大学生未来飞行器挑战赛正在火热进行中,本次挑战赛中的实践类赛道将面向全省高校大学生个人或团队征集未来先进侦察打一体化无人机的实地竞赛,主要考察路劲规划、视觉目标搜索、舵机控制、车机协同等需要团队协作的多方面技术能力。

 

主办方将在赛场内提供 UWB 基站信号覆盖,参赛队伍可以自主选择目标识别和定位方式。阿木实验室作为大赛技术支持方,为给参赛队员提供更全面的指导,在赛事中更好地发挥,我们根据实践类比赛规则做了一版实践类赛道仿真demo,供参赛队员参考~

仿真效果展示

本功能包(future_aircraft)为Prometheus仿真功能包之一,主要用于实现2022(第二届)四川省大学生未来飞行器挑战赛的实践类仿真,仿真效果如下:

2022年四川省大学生未来飞行器挑战赛-实践类赛道仿真demo_哔哩哔哩_bilibili

首先我们需要通过gazebo仿真器搭建比赛区域,增加飞机模型以及相机模型,此时无人机将由H位置一键起飞,起飞后无人机会立即转换为自动模式,开始通过机载传感器(下视相机)自主搜索目标标靶,并在目标标靶上方保持动态跟踪悬停(precision loiter)尽可能模拟投掷子弹状态。

若您对于实践类赛道仿真demo有任何疑问或建议,欢迎在文章下方给我们留言发起讨论~接下来我们将给大家分享该仿真场景的一些代码设计思路。

代码设计思路

该仿真场景的代码设计主要由控制部分和视觉识别部分组成,具体介绍如下:

控制部分

根据比赛要求,我们可以将该比赛区域分割为三部分,如下图所示:

在三部分区域中,设计10种状态机分别为:

当无人机执行起飞命令,起飞完成后会进入航点1阶段,进而进入搜索状态,以绕圈的方式进行搜索目标标靶;如果搜索到目标标靶,就将进入跟踪状态机,跟踪状态机进行跟踪并且在目标标靶上方保持悬停,这时候区域1任务结束。

接着无人机将继续执行区域2任务,先进入航点2阶段,再进入搜索状态,搜索目标标靶,当搜索到目标标靶后会进入跟踪状态并在目标标靶上方保持悬停,此时区域2任务结束。

最后无人机执行任务3进行动态跟踪,首先执行航点3飞行,飞行完成后无人机将在上空进行识别移动的目标标靶,识别到之后进入动态跟踪阶段并实时保持上方动态跟踪,此时区域3任务结束。

视觉部分

视觉部分采用的是椭圆检测识别方法:

​其中图像处理的过程如下:

第一步:图像去噪声,去除图像中的椒盐噪声。

第二步:弧检测,挑选出可能为弧的对象。

第三步:弧分类,判定弧属于四个象限中的哪一类。

​第四步:弧过滤,运用两段弧约束、CNC约束(三段弧约束),过滤不满足要求的弧。

第五步:椭圆估计,在剩下的四个象限的弧中进行排列组合,使用优化算法,通过4个弧线估计一个椭圆。

第六步:椭圆打分,使用特定打分算法,计算椭圆与4个弧线的拟合程度,给椭圆打分,最后选出得分较高的椭圆。

用到了哪些技术

航点状态机的实现,更多的是依赖于如何使用Prometheus控制子模块,因此也建议各位开发者在学习该仿真场景之前,先参考Prometheus使用手册学习Prometheus的控制子模块的内容。以下为用到的技术以及对应的代码实现:

WAY* 航点状态机:使用惯性系或者机体系下的位置控制。

WAY1:uav_command.header.frame_id = "ENU";uav_command.Agent_CMD = prometheus_msgs::UAVCommand::Move;uav_command.Move_mode = prometheus_msgs::UAVCommand::XYZ_POS;uav_command.position_ref[0] = waypoint1[0];uav_command.position_ref[1] = waypoint1[1];uav_command.position_ref[2] = waypoint1[2];

搜索状态机的实现,绕圆运动进行搜寻:


SEARCH:// sleep(10);//坐标系uav_command.header.frame_id = "ENU";// Move模式uav_command.Agent_CMD = prometheus_msgs::UAVCommand::Move;// Move_modeuav_command.Move_mode = prometheus_msgs::UAVCommand::XY_VEL_Z_POS;//无人机按照圆形轨迹飞行uav_command.velocity_ref[0] = -line_velocity * std::sin(count * angle_increment);uav_command.velocity_ref[1] = line_velocity * std::cos(count * angle_increment);uav_command.velocity_ref[2] = 0;uav_command.position_ref[2] = 1.5;

跟踪状态机的实现,使用对无人机速度控制的P调节:


TRACKING:if (!is_detected){--loss_count;if(loss_count < 0)exec_state = RETURN;PCOUT(0, YELLOW, "Return");}//坐标系uav_command.header.frame_id = "BODY";// Move模式uav_command.Agent_CMD = prometheus_msgs::UAVCommand::Move;// 机体系下的速度控制uav_command.Move_mode = prometheus_msgs::UAVCommand::XY_VEL_Z_POS_BODY;uav_command.velocity_ref[0] = -0.9 * ellipse_det.sight_angle[0];uav_command.velocity_ref[1] = 0.9 * ellipse_det.sight_angle[1];uav_command.velocity_ref[2] = 0;uav_command.position_ref[2] = 1.5;

视觉端数据的处理,坐标系变化:

for(auto &ellipes : msg->detection_infos){ellipse_det = ellipes;if (ellipse_det.detected && ellipse_det.object_name == "T"){num_regain++;num_lost = 0;}else{num_regain = 0;num_lost++;}if(num_lost > VISION_THRES){is_detected = false;// PCOUT(1, GREEN, "no detect");}if(num_regain > VISION_THRES){is_detected = true;// PCOUT(1, GREEN, "detected");}ellipse_det.sight_angle[0] = ellipes.sight_angle[1];ellipse_det.sight_angle[1] = ellipes.sight_angle[0];

更多详情请参考:https://github.com/amov-lab/Prometheus/tree/main/Modules/future_aircraft

可能存在的问题

1、动态跟踪只有P调节的速度控制,跟踪效果并非理想情况,控制算法还需要针对比赛实际情况进行优化。

2、目前的仿真场景下暂时没有办法模拟子弹投掷至目标标靶,因此我们采取的替代方式是让无人机在目标标靶上方保持悬停一段时间,如果是在真实比赛场景下,还需要新增投掷标靶状态机。

电脑配置要求

以上内容均为阿木实验室仿真演示,各位开发者如需复现,对电脑配置会有一定的要求,Prometheus仿真环境配置主要有两种方式,分别是通过虚拟机或者实体机。

虚拟机安装的电脑配置要求

以笔者电脑为例:

具体的虚拟机安装方式可参考Prometheus使用手册中第2.2章节内容。

实体机安装的电脑配置要求

实体机的要求相对于虚拟机要低一些,具体为:内存 8GB;硬盘空间 60GB;CPU 6核12线。实体机的具体安装方式可参考Prometheus使用手册中第2.1章节内容。

这里我们推荐实体机的安装方式,相对虚拟机来说,实体机可以将全部的硬件资源利用起来,运行速度更快,bug也会更少。

Prometheus使用手册:https://wiki.amovlab.com/public/prometheus-wiki/

相关代码与资料

码云链接:https://gitee.com/amovlab/Prometheus/tree/main/Modules/future_aircraft

GitHub链接:https://github.com/amov-lab/Prometheus/tree/main/Modules/future_aircraft

与本届飞行器挑战赛实践赛道相关的代码都在“ Prometheus/Modules/future_aircraft”目录下,具体运行及使用可参考“readme”:https://github.com/amov-lab/Prometheus/blob/main/Modules/future_aircraft/readme.md

若大家在学习过程中遇到无法解决的使用场景或bug,可以在文末下方给我们留言,我们将为您提供解决思路~

如需探讨更多关于本届未来飞行器大赛的相关技术,可添加微信“jiayue199506”申请进入赛事交流群~

这篇关于赛前指导:第二届未来飞行器挑战赛实践赛道之技术详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/803964

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

金融业开源技术 术语

金融业开源技术  术语 1  范围 本文件界定了金融业开源技术的常用术语。 本文件适用于金融业中涉及开源技术的相关标准及规范性文件制定和信息沟通等活动。

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时