BP神经网络对水质问题进行预测(Matlab代码实现)

2024-03-13 05:20

本文主要是介绍BP神经网络对水质问题进行预测(Matlab代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现

💥1 概述

在大数据、人工智能的背景下,神经网络算法被广泛的应用和普及,风险预测问题成为人们关注的热点,BP神经网络算法是用于解决预测问题效果最好的算法之一,但传统的BP神经网络算法在隐含层权值选择过程具有一定的局限性,会影响算法预测的效率和精度。针对这种情况,提出了改进的BP神经网络算法,利用遗传算法和BP神经网络算法相结合,提升算法的预测效率和预测精度。首先,分析传统BP神经网络算法流程及不足;其次,利用遗传算法优化BP神经网络算法;最后,提出改进的BP神经网络算法执行流程,并以食品价格数据进行对比分析。通过实验分析结果可知,相对于传统的BP神经网络算法,该方法在预测过程中可以提高预测效率、提升预测精度。本文章采用BP算法并训练使用的数据集404个水质数据对水质问题进行预测。

📚2 运行结果

 部分代码:

 

clc 
clear all 

load out2.mat
load train.mat
outrec = outrec';
ml = [2.35500000000000,0.110000000000000,6.50000000000000,323.500000000000];
mm = [10.9945239746905,69.0063006300631,-6.66869763899466,-0.319387271030040];
for j = 1:4
    for i = 1:404
        outrec(i,j) = outrec(i,j)*ml(j)+mm(j);

    end
end

for j = 1:4
    for i = 1:404
        traind_s(i,j) = traind_s(i,j)*ml(j)+mm(j);

    end
end


xunlian = 250;
yuce = 152;

a = 1:xunlian;
b = xunlian+1:xunlian+yuce;

figure(1)
%% 拟合曲线

title('fitted');

zzl = 1;
subplot(2,2,zzl);
plot(a,traind_s(1:xunlian,zzl),'b');
hold on 
plot(a+10,outrec(1:xunlian,zzl),'r');
hold off 
xlabel('time');
ylabel('temperature');
legend('measured value','fitted value');

        
zzl =2;
subplot(2,2,zzl);
plot(a,traind_s(1:xunlian,zzl),'b');
hold on 
plot(a+10,outrec(1:xunlian,zzl),'r');
hold off 
xlabel('time');
ylabel('pH');
legend('measured value','fitted value');

zzl = 3;
subplot(2,2,zzl);
plot(a,traind_s(1:xunlian,zzl),'b');
hold on 
plot(a+10,outrec(1:xunlian,zzl),'r');
hold off 
xlabel('time');
ylabel('Do');
legend('measured value','fitted value');

zzl = 4;
subplot(2,2,zzl);
plot(a,traind_s(1:xunlian,zzl),'b');
hold on 
plot(a+10,outrec(1:xunlian,zzl),'r');
hold off 
xlabel('time');
ylabel('ORP');
legend('measured value','fitted value');

%% 预测曲线
figure(2)

zzl = 1;
subplot(2,2,zzl);

plot(b,traind_s(xunlian+1:xunlian+yuce,zzl),'b');
hold on 
plot(b+10,outrec(xunlian+1:xunlian+yuce,zzl),'r');
hold off 

xlabel('time');
ylabel('temperature');
legend('measured value','predicted value');

zzl = 2;
subplot(2,2,zzl);
plot(b,traind_s(xunlian+1:xunlian+yuce,zzl),'b');
hold on 
plot(b+10,outrec(xunlian+1:xunlian+yuce,zzl),'r');
hold off 
xlabel('time');
ylabel('pH');
legend('measured value','predicted value');

zzl = 3;
subplot(2,2,zzl);
plot(b,traind_s(xunlian+1:xunlian+yuce,zzl),'b');
hold on 
plot(b+10,outrec(xunlian+1:xunlian+yuce,zzl),'r');
hold off 
xlabel('time');
ylabel('DO');
legend('measured value','predicted value');

zzl = 4;
subplot(2,2,zzl);
plot(b,traind_s(xunlian+1:xunlian+yuce,zzl),'b');
hold on 
plot(b+10,outrec(xunlian+1:xunlian+yuce,zzl),'r');
hold off 
xlabel('time');
ylabel('ORP');
legend('measured value','predicted value');

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]刘红梅,徐英岚,张博,李荣.基于最小二乘支持向量回归的水质预测[J].计算机与现代化,2019(09):31-34.

[2]邬希可.改进的神经网络算法在预测方法中研究与应用[J].计算机与数字工程,2022,50(10):2276-2279+2344.

🌈4 Matlab代码实现

这篇关于BP神经网络对水质问题进行预测(Matlab代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/803746

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本