有趣的数学 毕达哥拉斯定理

2024-03-13 03:20

本文主要是介绍有趣的数学 毕达哥拉斯定理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        随便找个学生,让他举出一位著名的数学家——如果他能想到的话,他往往会选择毕达哥拉斯。如果不是,也许他想到的是阿基米德。哪怕是杰出的艾萨克·牛顿,在两位古代世界的巨星面前也只能叨陪末座了。阿基米德是一位思想巨人,毕达哥拉斯或许算不上,但人们往往低估了他的贡献,他值得更多赞誉——不在于他做出了什么,而在于他推动了什么。

        在公元前570年左右,毕达哥拉斯出生在爱琴海东部的希腊萨摩斯岛。他是一位哲学家和几何学家。我们对他的生活所知甚少,而且信息都来自很久之后的记述,其历史准确性存疑,但关键事件很可能是对的。公元前530年左右,他搬到古希腊殖民地克罗顿(今意大利)。他在那里创立了一个哲学宗教团体——“毕达哥拉斯学派”,他们相信宇宙是基于数字的。时至今日,其创始人的名声就来自以他的名字命名的定理。这个定理已被教授了两千多年,还进入了流行文化。

关于毕达哥拉斯的希腊邮票

        由于历史的不可考,现代人并不知道毕达哥拉斯是否真的证明了他的定理。事实上,根本不知道这是否是他的定理。它完全有可能是毕达哥拉斯的一个仆从,或某个古巴比伦或苏美尔的抄写员发现的。但人们把它归功于毕达哥拉斯,他的名字就流传下来了。无论其起源如何,这个定理和它的结果对人类历史产生了巨大的影响。它们的的确确拓展了我们的世界。 

        古希腊人并没有将毕达哥拉斯定理表达为现代符号意义上的等式。那是随着代数的发展才出现的。在古代,该定理以口头和几何的方式表达。亚历山大里亚的欧几里得的著作记载了它最优雅的形式,这也是它的第一个文献证据。公元前250年左右,欧几里得写下了著名的《几何原本》——有史以来最具影响力的数学教科书,成为第一位现代数学家。

        欧几里得把几何学变成了逻辑:他明确地列出了自己的基本假设,并援引这些假设,为他的所有定理提供系统的证明。他建造了一座概念之塔,其基础是点、线和圆,而塔尖则恰好存在五种正多面体。        

        欧几里得几何“王冠上的明珠”就是我们现在所说的毕达哥拉斯定理:《几何原本》第一卷中的命题47。在托马斯·希思爵士的著名译本中,这个命题是这样写的:“在直角三角形中,直角所对的边上的正方形等于夹直角的边上的两个正方形。”

        就高等数学而言,古希腊人使用的是直线和面积,而不是数字。所以毕达哥拉斯和他的古希腊后人将这个定理解释为面积相等:“用直角三角形中最长边构造的正方形面积,是由另外两边构造的正方形面积的和。”最长的一条边就是著名的“斜边”(hypotenuse),意思是“在下面拉伸”。如果你以恰当的方向画图,确实如此,如下图(左)所示。 

        左:欧几里得证明毕达哥拉斯定理的构造线。中和右:定理的另一证明。外部正方形的面积相等,阴影三角形的面积也相等。因此,倾斜的白色正方形面积等于其他两个白色正方形面积之和。

        2000年后,毕达哥拉斯定理就被重写为代数方程a^2+b^2 = c^2,毕达哥拉斯方程有许多用途和意义。最直接的是,给定另外两边,它可以让你计算斜边的长度。

        我们在现实生活中遇到的许多三角形都不是直角三角形,因此方程的直接应用似乎有限。但是,任何三角形都可以分割成两个直角三角形,而任何多边形都可以分割成若干三角形。因此,直角三角形是关键:它们证明了三角形的形状与其边的长度之间存在有用的关系。从这一见解中发展出来的学科是三角学——“三角形的测量”。

        直角三角形是三角学的基础,特别是它决定了基本的三角函数:正弦、余弦和正切。这些名称源于阿拉伯语,而这些函数及其许多前辈的发展史,展示了今天这个版本经历了什么样的复杂路径。

        欧几里得《几何原本》中的毕达哥拉斯定理的证明,把这个定理牢牢地限定在欧氏几何的范围内。“欧氏几何”这个词一度可以直接换成“几何”,因为我们通常认为欧氏几何就是物理空间的真实几何。

        但事实并非如此,后面若干年又发展出来椭圆几何(黎曼几何)、罗氏几何(双曲几何)等,都是非欧几里得几何,并且这些新的几何与欧氏几何一样逻辑自洽,遵循了除了平行公理之外的所有公理。

这篇关于有趣的数学 毕达哥拉斯定理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/803493

相关文章

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

CSP-J基础之数学基础 初等数论 一篇搞懂(一)

文章目录 前言声明初等数论是什么初等数论历史1. **古代时期**2. **中世纪时期**3. **文艺复兴与近代**4. **现代时期** 整数的整除性约数什么样的整数除什么样的整数才能得到整数?条件:举例说明:一般化: 判断两个数能否被整除 因数与倍数质数与复合数使用开根号法判定质数哥德巴赫猜想最大公因数与辗转相除法计算最大公因数的常用方法:举几个例子:例子 1: 计算 12 和 18

2024年AMC10美国数学竞赛倒计时两个月:吃透1250道真题和知识点(持续)

根据通知,2024年AMC10美国数学竞赛的报名还有两周,正式比赛还有两个月就要开始了。计划参赛的孩子们要记好时间,认真备考,最后冲刺再提高成绩。 那么如何备考2024年AMC10美国数学竞赛呢?做真题,吃透真题和背后的知识点是备考AMC8、AMC10有效的方法之一。通过做真题,可以帮助孩子找到真实竞赛的感觉,而且更加贴近比赛的内容,可以通过真题查漏补缺,更有针对性的补齐知识的短板。