初阶数据结构之---堆的应用(堆排序和topk问题)

2024-03-12 23:36

本文主要是介绍初阶数据结构之---堆的应用(堆排序和topk问题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

上篇博客讲到了堆是什么,以及堆的基本创建和实现,这次我们再来对堆这个数据结构更进一步的深入,将讲到的内容包括:向下调整建堆,建堆的复杂度计算,堆排序和topk问题。话不多说,开启我们今天的内容吧。

堆排序

在讲堆排序之前,我想讲讲建堆的问题。在上篇博客中,我们建堆的时候是存在一个数组(数组中存储着我们建堆所需要的元素),通过一个个取出数组中的元素并插入新的堆中达到建堆目的。这时我们可以想,如果需要直接在存储元素的数组上建堆,应该怎么处理呢?

向上调整建堆

如果你学会了向上调整,你应该不难想到可以这样写:

//这里是在原数组的基础上建立大堆
void Swap(int* x, int* y)
{int tmp = *x;*x = *y;*y = tmp;
}void AdjustUp(int* a, int child)
{int parent = (child - 1) / 2;while (child > 0) {if (a[parent] < a[child]) {Swap(&a[parent], &a[child]);child = parent;parent = (child - 1) / 2;}else break;}
}int main()
{int arr[] = { 6,5,4,3,2,1,8,7,5,4,2 };for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); i++) {AdjustUp(arr, i);}for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); i++) {printf("%d ", arr[i]);}return 0;
}

上面的代码即对堆中每一个元素经行向上调整,最后我们就能成功的得到一个大堆

向下调整建堆

其实有一种比向上调整建堆时间复杂度更优的方式,那就是向下调整建堆,这里要注意的一点就是,向下调整的使用条件:根节点的左右子树都得是堆。数组中的元素开始是无序的,想要向下调整建堆,就需要从下往上建。由于二叉树最后一层不需要向下调整,所以我们可以直接从倒数第二层开始向下调。倒数第二层的末尾元素就是(size - 1 - 1)/ 2

代码实现向下调整建堆就是这样:

//这里是在原数组的基础上建立大堆
void Swap(int* x, int* y)
{int tmp = *x;*x = *y;*y = tmp;
}void AdjustDown(int* a, int n, int parent)
{int child = parent * 2 + 1;while (child < n) {if (child + 1 < n && a[child + 1] > a[child])child++;if (a[child] > a[parent]) {Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else break;}
}int main()
{int arr[] = { 6,5,4,3,2,1,8,7,5,4,2 };int size = sizeof(arr) / sizeof(arr[0]);for (int i = (size-1-1)/2; i >= 0; i--) {AdjustDown(arr, size, i);}for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); i++) {printf("%d ", arr[i]);}return 0;
}

打印结果和向上调整建堆相同

图解分析此过程:

时间复杂度分析

为什么说向下调整建堆的复杂度更低呢?这确实可以用正规的方式来推一下,证明这不是凭空想象出来的结论。

堆是完全二叉树,满二叉树也是完全二叉树,此处为了简化用直接满二叉树来计算建堆的复杂度(这里实际上多几个结点并不影响,时间复杂度实际计算中计算的也只是一个近似值)

1.向上调整时间复杂度计算

需要移动结点的总步数为:

F(h) = 2^0 * 0 + 2^1 * 1 + 2^2 * 2 +……+ 2^(h-1) * (h - 1)

会发现这是一个等差乘等比的差比数列前n项之和,大家高中应该学过错位相减吧,这里我们用错位相减求和就可以。

1式: 2 * F(h) = 2^1 * 0 + 2^2 * 1 + 2^3 * 2 +……+ 2^h * (h - 1)

2式:F(h) = 2^0 * 0 + 2^1 * 1 + 2^2 * 2 +……+ 2^(h-1) * (h - 1)

1式 - 2式

F(h) = -2^1 - 2^2 - 2^3 -……-2^(h-1) + 2^h * (h - 1)

上式的加粗部分是一个等比数列,运用等比数列求和公式即可得:

F(h) =  2^h * (h - 2) + 2

而我们又可以导出节点数N和树的深度h之间的关系

N = 2^h-1 ---> h = log(N+1)

带入F(h)中可得

F(N) = (N+1)*[ log(N+1)-2 ] + 2

时间复杂度即为:O(N*logN)

2.向下调整时间复杂度的计算

则需要移动的步数为:

F(h) = 2^0 * (h-1) + 2^1 * (h-2) + …… + 2^(h-3) * 2 + 2^(h-2) * 1

这里也是一个差比数列,列两个式子:
1式:F(h) = 2^0 * (h-1) + 2^1 * (h-2) + …… + 2^(h-3) * 2 + 2^(h-2) * 1

2式:2 * F(h) = 2^1 * (h-1) + 2^2 * (h-2) + …… + 2^(h-2) * 2 + 2^(h-1) * 1

1式 - 2式

F(h) = 1 - h + 2^1 + 2^2 + 2^3 + 2^4 +……+ 2^(h-2) + 2^(h-1)

等比数列公式一套一化简:

F(h) = 2^h - 1 - h

我们已知N和h之间的关系:N = 2^h-1 ---> h = log(N+1)

最终可得:

F(N) = N -log(N+1)

时间复杂度即为:O(N)

 算到这里,就可以非常轻松的比较出两个方式建堆复杂度的优劣了(向下调整建堆更优)。

堆排序的实现

先放上堆排序代码,再来进行讲解

//堆排序
//交换两个变量
void Swap(int* x, int* y)
{int tmp = *x;*x = *y;*y = tmp;
}
//向下调整
void AdjustDown(int* a, int n, int parent)
{int child = parent * 2 + 1;while (child < n) {if (child + 1 < n && a[child + 1] > a[child])child++;if (a[child] > a[parent]) {Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else break;}
}
//堆排序
void HeapSort(int* a, int n)
{//向下调整建堆for (int i = (n - 1 - 1) / 2; i >= 0; i--) {AdjustDown(a, n, i);}//每次选出一个最大值int end = n - 1;while (end > 0) {Swap(&a[0], &a[end]);AdjustDown(a, end, 0);--end;}
}
//使用堆排序
int main()
{int arr[] = { 6,5,4,3,2,1,8,7,5,4,2 };for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); i++) {printf("%d ", arr[i]);}printf("\n");HeapSort(arr, sizeof(arr) / sizeof(arr[0]));for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); i++) {printf("%d ", arr[i]);}printf("\n");return 0;
}

 可以运行一下看看结果:

你可能会问,代码中建立的是大堆,是怎么排出了由小到大的效果呢?其实这个过程和堆的删除过程是及其相似的

  1. 堆顶存储的是整个堆中最大的元素,当与堆末尾的元素交换之后,最大的元素就成功放到数组的末尾
  2. 通过向下调整之后,堆顶存放的便是堆中第二大的元素
  3. 每次交换堆底都减1(排好的元素不再参与向下调整的过程),这时堆底(新的堆底)和堆顶再次交换,回到步骤1

堆排序的过程其实就是这样(图解):

这里再次总结,堆排序即利用堆的思想来进行排序,总共分为两个步骤:

1. 建堆

        * 升序:建大堆

        * 降序:建小堆

2. 利用删除思想来进行排序

TOP-K问题

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。

比如:几十个,几百个,几千个甚至上亿个数字中找到最大的前K个数字。

对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(你甚至无法将数据放入数组)。最佳的方式就是用来解决,基本思路如下:

1. 用数据集合中前k个来建堆

        * 要找最大的前k个元素,建小堆

        * 要找最小的前k个元素,建大堆

2. 用剩余的N - K个元素依次与栈顶元素来比较,不满足则替换堆顶元素向下调整

将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素(本topk示例代码中计算的是最大的前K个)。

在这里我们可以用文件操作的方式来试一试,我们先来写一个造数据的函数。

void CreateNDate()
{// 造数据int n = 10000;srand(time(0));const char* file = "data.txt";FILE* fin = fopen(file, "w");if (fin == NULL){perror("fopen error");return;}for (size_t i = 0; i < n; ++i){int x = rand() % 1000000;fprintf(fin, "%d\n", x);}fclose(fin);
}

这里将造出来的数据写入到 data.txt 文件中,运行完此函数后,当前目录下会多一个data.txt文件

打开此文本文件:

通过此函数,我们已经成功造出了10000个数据了

接下来就是topk代码的实现:

#include<time.h>
#include<stdio.h>
#include<stdlib.h>//交换函数
void Swap(int* x, int* y)
{int tmp = *x;*x = *y;*y = tmp;
}//向下调整
void AdjustDown(int* a, int n, int parent)
{int child = parent * 2 + 1;while (child < n) {if (child + 1 < n && a[child + 1] < a[child])child++;if (a[child] < a[parent]) {Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else break;}
}//topk代码
void PrintTopK(int k) //这里的k是选出最大的前k个数
{//打开需要查找前K大数据的文件---data.txtFILE* file = fopen("data.txt", "r");if (file == NULL) {perror("fopen fail:");exit(1);}//创建存放堆数据的空间int* arr = (int*)malloc(sizeof(int) * (k + 1));if (arr == NULL) {perror("malloc fail:");exit(1);}//输入文件中前k个数据for (int i = 0; i < k; i++) {fscanf(file, "%d", &arr[i]);}//将放入的前k个数字调整建堆for (int i = (k - 1 - 1) / 2; i >= 0; i--) {AdjustDown(arr, k, i);}//这里是topk的重点,遍历K - N的数字,将符合的数字插入堆中for (int i = k; i < 10000; i++) {int tmp = 0;fscanf(file, "%d", &tmp);//如果tmp比堆顶的数据大,则放入堆顶向下调整if (tmp > arr[0]) {arr[0] = tmp;AdjustDown(arr, k, 0);}}//打印前K个最大的数字for (int i = 0; i < k; i++) {printf("%d ", arr[i]);}
}int main()
{//输入选前多少大数字int digit = 10;scanf("%d", &digit);PrintTopK(digit);return 0;
}

这里,程序成功选出了文件中前100大的数字,如果觉得这样不够严谨,你也可以添加几个位数较高的数据到文件中,看看你的程序能否选出你写入文件的几个特殊的大数字即可。相信在这些测试过后你可以成功感受到topk算法的魅力。

结语

到这里,基本上就是二叉树顺序结构的全部内容了,本篇博客带大家学习了解了堆排序,计算了向上调整建堆向下调整建堆的时间复杂度,最后还说到了topk算法。这些内容其实并不难,只要肯下功夫,肯动手,一定能学下来。后面博主还会带大家了解关于二叉树链式结构的内容,欢迎大家多多关注和支持我,比心-♥

这篇关于初阶数据结构之---堆的应用(堆排序和topk问题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/802948

相关文章

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

解决Cron定时任务中Pytest脚本无法发送邮件的问题

《解决Cron定时任务中Pytest脚本无法发送邮件的问题》文章探讨解决在Cron定时任务中运行Pytest脚本时邮件发送失败的问题,先优化环境变量,再检查Pytest邮件配置,接着配置文件确保SMT... 目录引言1. 环境变量优化:确保Cron任务可以正确执行解决方案:1.1. 创建一个脚本1.2. 修