当时说大概率在面试不会出的题目,在旷视二面出了

2024-03-12 21:12

本文主要是介绍当时说大概率在面试不会出的题目,在旷视二面出了,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

旷视科技 面试原题

昨天在翻看读者历史留言的时候,无意看到一条几个月前的留言。

当时这位读者投稿了旷视科技的二面算法原题。

而投稿的题目,我印象很深,当时我还在日更 LC 题解的时候,曾作为 LC 每日一题出过。

那天还有群里小伙伴问过:这么难的题有必要掌握吗?

我当时给的答复大概是:将知识拆开看来,不算冷门,但企业笔试面试大概率不会出这样的题。

结果读者投稿这道题出现在了旷视二面 🤣

啊?旷视的区分度果然在字节跳动之上。

一起来看看这道题。

题目描述

平台:LeetCode

题号:805

给定你一个整数数组 nums

我们要将 nums 数组中的每个元素移动到 A 数组 或者 B 数组中,使得 A 数组和 B 数组不为空,并且 average(A) == average(B) 。

如果可以完成则返回 true, 否则返回 false

注意:对于数组 arr,  average(arr) 是 arr 的所有元素除以 arr 长度的和。

示例 1:

输入: nums = [1,2,3,4,5,6,7,8]

输出: true

解释: 我们可以将数组分割为 [1,4,5,8] 和 [2,3,6,7], 他们的平均值都是4.5

示例 2:

输入: nums = [3,1]

输出: false

提示:

折半搜索 + 二进制枚举 + 哈希表 + 数学

提示一:将长度为 ,总和为 的原数组划分为两组,使得两数组平均数相同,可推导出该平均数

若两数组平均数相同,则由两数组组成的新数组(对应原数组 nums)平均数不变,而原数组的平均数可直接算得。

提示二:原数组长度为 ,直接通过「二进制枚举」的方式来做,计算量为 ,该做法无须额外空间,但会 TLE

所谓的直接使用「二进制枚举」来做,是指用二进制表示中的 01 分别代表在划分数组两边。

如果直接对原数组进行「二进制枚举」,由于每个 都有两种决策(归属于数组 AB),共有 个状态需要计算。同时每个状态 state 而言,需要 的时间复杂度来判定,但整个过程只需要有限个变量。

因此直接使用「二进制枚举」是一个无须额外空间 TLE 做法。

提示三:空间换时间

我们不可避免需要使用「枚举」的思路,也不可避免对每个 有两种决策。「但我们可以考虑缩减每次搜索的长度,将搜索分多次进行。」

具体的,我们可以先对 nums 的前半部分进行搜索,并将搜索记录以「二元组 的形式」进行缓存(mapset),其中 tot 为划分元素总和,cnt 为划分元素个数;随后再对 nums 的后半部分进行搜索,假设当前搜索到结果为 ,假设我们能够通过“某种方式”算得另外一半的结果为何值,并能在缓存结果中查得该结果,则说明存在合法划分方案,返回 true

通过「折半 + 缓存结果」的做法,将「累乘」的计算过程优化成「累加」计算过程。

提示四:何为“某种方式”

假设我们已经缓存了前半部分的所有搜索结果,并且在搜索后半部分数组时,当前搜索结果为 ,应该在缓存结果中搜索何值来确定是否存在合法划分方案。

假设存在合法方案,且在缓存结果应当被搜索的结果为 。我们有

因此我们可以直接枚举系数 来进行判定,其中 的取值范围为 ,结合上式算得 ,若在缓存结果中存在 ,说明存在合法方案。

Java 代码:

class Solution {
    public boolean splitArraySameAverage(int[] nums) {
        int n = nums.length, m = n / 2, sum = 0;
        for (int x : nums) sum += x;
        Map<Integer, Set<Integer>> map = new HashMap<>();
        for (int s = 0; s < (1 << m); s++) {
            int tot = 0, cnt = 0;
            for (int i = 0; i < m; i++) {
                if (((s >> i) & 1) == 1) {
                    tot += nums[i]; cnt++;
                }
            }
            Set<Integer> set = map.getOrDefault(tot, new HashSet<>());
            set.add(cnt);
            map.put(tot, set);
        }
        for (int s = 0; s < (1 << (n - m)); s++) {
            int tot = 0, cnt = 0;
            for (int i = 0; i < (n - m); i++) {
                if (((s >> i) & 1) == 1) {
                    tot += nums[i + m]; cnt++;
                }
            }
            for (int k = Math.max(1, cnt); k < n; k++) {
                if (k * sum % n != 0continue;
                int t = k * sum / n;
                if (!map.containsKey(t - tot)) continue;
                if (!map.get(t - tot).contains(k - cnt)) continue;
                return true;
            }
        }
        return false;
    }
}

C++ 代码:

class Solution {
public:
    bool splitArraySameAverage(vector<int>& nums) {
        int n = nums.size(), m = n / 2, sum = 0;
        for (int x : nums) sum += x;
        map<intunordered_set<int>> hashMap;
        for (int s = 0; s < (1 << m); s++) {
            int tot = 0, cnt = 0;
            for (int i = 0; i < m; i++) {
                if ((s >> i) & 1) {
                    tot += nums[i]; cnt++;
                }
            }
            hashMap[tot].insert(cnt);
        }
        for (int s = 0; s < (1 << (n - m)); s++) {
            int tot = 0, cnt = 0;
            for (int i = 0; i < (n - m); i++) {
                if ((s >> i) & 1) {
                    tot += nums[i + m]; cnt++;
                }
            }
            for (int k = max(1, cnt); k < n; k++) {
                if (k * sum % n != 0continue;
                int t = k * sum / n;
                if (hashMap.count(t - tot) == 0continue;
                if (!hashMap[t - tot].count(k - cnt)) continue;
                return true;
            }
        }
        return false;
    }
};

Python 代码:

from collections import defaultdict

class Solution:
    def splitArraySameAverage(self, nums: List[int]) -> bool:
        n, m = len(nums), len(nums) // 2
        sum_nums = sum(nums)
        hash_map = defaultdict(set)
        for s in range(1 << m):
            tot = cnt = 0
            for i in range(m):
                if ((s >> i) & 1):
                    tot += nums[i]
                    cnt += 1
            hash_map[tot].add(cnt)
        for s in range(1 << (n - m)):
            tot = cnt = 0
            for i in range(n - m):
                if ((s >> i) & 1):
                    tot += nums[i + m]
                    cnt += 1
            for k in range(max(1, cnt), n):
                if (k * sum_nums) % n != 0continue
                t = (k * sum_nums) // n
                if (t - tot) not in hash_map: continue
                if (k - cnt) not in hash_map[t - tot]: continue
                return True
        return False

TypeScript 代码:

function splitArraySameAverage(nums: number[]): boolean {
    let n = nums.length, m = Math.floor(n / 2), sum = 0;
    for (let x of nums) sum += x;
    let map = new Map();
    for (let s = 0; s < (1 << m); s++) {
        let tot = 0, cnt = 0;
        for (let i = 0; i < m; i++) {
            if (((s >> i) & 1) == 1) {
                tot += nums[i]; cnt++;
            }
        }
        let set = map.get(tot) || new Set();
        set.add(cnt);
        map.set(tot, set);
    }
    for (let s = 0; s < (1 << (n - m)); s++) {
        let tot = 0, cnt = 0;
        for (let i = 0; i < (n - m); i++) {
            if (((s >> i) & 1) == 1) {
                tot += nums[i + m]; cnt++;
            }
        }
        for (let k = Math.max(1, cnt); k < n; k++) {
            if (k * sum % n != 0continue;
            let t = Math.floor(k * sum / n);
            if (!map.has(t - tot)) continue;
            if (!map.get(t - tot).has(k - cnt)) continue;
            return true;
        }
    }
    return false;
};
  • 时间复杂度:对原数组前半部分搜索复杂度为 ;对原数组后半部分搜索复杂度为 ,搜索同时检索前半部分的结果需要枚举系数 k,复杂度为 。整体复杂度为
  • 空间复杂度:

我是宫水三叶,每天都会分享算法知识,并和大家聊聊近期的所见所闻。

欢迎关注,明天见。

更多更全更热门的「笔试/面试」相关资料可访问排版精美的 合集新基地 🎉🎉

这篇关于当时说大概率在面试不会出的题目,在旷视二面出了的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/802594

相关文章

字节面试 | 如何测试RocketMQ、RocketMQ?

字节面试:RocketMQ是怎么测试的呢? 答: 首先保证消息的消费正确、设计逆向用例,在验证消息内容为空等情况时的消费正确性; 推送大批量MQ,通过Admin控制台查看MQ消费的情况,是否出现消费假死、TPS是否正常等等问题。(上述都是临场发挥,但是RocketMQ真正的测试点,还真的需要探讨) 01 先了解RocketMQ 作为测试也是要简单了解RocketMQ。简单来说,就是一个分

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

题目1254:N皇后问题

题目1254:N皇后问题 时间限制:1 秒 内存限制:128 兆 特殊判题:否 题目描述: N皇后问题,即在N*N的方格棋盘内放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在同一斜线上。因为皇后可以直走,横走和斜走如下图)。 你的任务是,对于给定的N,求出有多少种合法的放置方法。输出N皇后问题所有不同的摆放情况个数。 输入

题目1380:lucky number

题目1380:lucky number 时间限制:3 秒 内存限制:3 兆 特殊判题:否 提交:2839 解决:300 题目描述: 每个人有自己的lucky number,小A也一样。不过他的lucky number定义不一样。他认为一个序列中某些数出现的次数为n的话,都是他的lucky number。但是,现在这个序列很大,他无法快速找到所有lucky number。既然

java面试常见问题之Hibernate总结

1  Hibernate的检索方式 Ø  导航对象图检索(根据已经加载的对象,导航到其他对象。) Ø  OID检索(按照对象的OID来检索对象。) Ø  HQL检索(使用面向对象的HQL查询语言。) Ø  QBC检索(使用QBC(Qurey By Criteria)API来检索对象。 QBC/QBE离线/在线) Ø  本地SQL检索(使用本地数据库的SQL查询语句。) 包括Hibern

【408数据结构】散列 (哈希)知识点集合复习考点题目

苏泽  “弃工从研”的路上很孤独,于是我记下了些许笔记相伴,希望能够帮助到大家    知识点 1. 散列查找 散列查找是一种高效的查找方法,它通过散列函数将关键字映射到数组的一个位置,从而实现快速查找。这种方法的时间复杂度平均为(

贝壳面试:什么是回表?什么是索引下推?

尼恩说在前面 在40岁老架构师 尼恩的读者交流群(50+)中,最近有小伙伴拿到了一线互联网企业如得物、阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试资格,遇到很多很重要的面试题: 1.谈谈你对MySQL 索引下推 的认识? 2.在MySQL中,索引下推 是如何实现的?请简述其工作原理。 3、说说什么是 回表,什么是 索引下推 ? 最近有小伙伴在面试 贝壳、soul,又遇到了相关的

毕业前第二次面试的感慨

距面试已经过去了有几天了,我现在想起来都有说多的恨感慨。 我一直都是想找刚刚起步的企业,因为这能让我学到更多的东西,然而正好有一家企业是刚起步的,而且他还有自己的产品专利,可以说这是一家,即是创业又是刚起步的公司,这家公司回复了我投给他的简历,这家企业想进一步了解我的情况,因为简历上我符合这家企业的基本要求,所以要进一步了解。 虽然面试的过程中,他给我的面试题,我做得并不是很理想,

如何保证android程序进程不到万不得已的情况下,不会被结束

最近,做一个调用系统自带相机的那么一个功能,遇到的坑,在此记录一下。 设备:红米note4 问题起因 因为自定义的相机,很难满足客户的所有需要,比如:自拍杆的支持,优化方面等等。这些方面自定义的相机都不比系统自带的好,因为有些系统都是商家定制的,难免会出现一个奇葩的问题。比如:你在这款手机上运行,无任何问题,然而你换一款手机后,问题就出现了。 比如:小米的红米系列,你启用系统自带拍照功能后