闭包表(Closure Table)存储和查询树形数据结构

2024-03-12 21:04

本文主要是介绍闭包表(Closure Table)存储和查询树形数据结构,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

闭包表通过在关系表中记录树节点之间的直接和间接关系来表示节点之间的层次结构,目的是支持高效的树遍历和查询操作。
在这里插入图片描述
在这里插入图片描述

一、创建闭包表

CREATE TABLE `departments` (`id` int NOT NULL COMMENT 'ID',`name` varchar(50) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci DEFAULT NULL COMMENT '部门名称',`parent_id` int DEFAULT NULL COMMENT '父ID',PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci COMMENT='部门表';
CREATE TABLE `departments_closure_table` (`ancestor` int NOT NULL COMMENT '祖先节点',`descendant` int NOT NULL COMMENT '后代节点',PRIMARY KEY (`ancestor`,`descendant`),KEY `fk_descendant` (`descendant`),CONSTRAINT `fk_ancestor` FOREIGN KEY (`ancestor`) REFERENCES `departments` (`id`) ON DELETE RESTRICT ON UPDATE RESTRICT,CONSTRAINT `fk_descendant` FOREIGN KEY (`descendant`) REFERENCES `departments` (`id`) ON DELETE RESTRICT ON UPDATE RESTRICT
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci COMMENT='部门信息闭包表';

初始化部门表

INSERT INTO `hytto_cs`.`departments`(`id`, `name`, `parent_id`) VALUES (1, '集团总部', NULL);
INSERT INTO `hytto_cs`.`departments`(`id`, `name`, `parent_id`) VALUES (2, '华北总部', 1);
INSERT INTO `hytto_cs`.`departments`(`id`, `name`, `parent_id`) VALUES (3, '华南总部', 1);
INSERT INTO `hytto_cs`.`departments`(`id`, `name`, `parent_id`) VALUES (4, '华东总部', 1);
INSERT INTO `hytto_cs`.`departments`(`id`, `name`, `parent_id`) VALUES (5, '华中总部', 1);
INSERT INTO `hytto_cs`.`departments`(`id`, `name`, `parent_id`) VALUES (6, '华西总部', 1);
INSERT INTO `hytto_cs`.`departments`(`id`, `name`, `parent_id`) VALUES (7, '北京子公司', 2);
INSERT INTO `hytto_cs`.`departments`(`id`, `name`, `parent_id`) VALUES (8, '天津子公司', 2);
INSERT INTO `hytto_cs`.`departments`(`id`, `name`, `parent_id`) VALUES (9, '河北子公司', 2);
INSERT INTO `hytto_cs`.`departments`(`id`, `name`, `parent_id`) VALUES (10, '广东子公司', 3);
INSERT INTO `hytto_cs`.`departments`(`id`, `name`, `parent_id`) VALUES (11, '广西子公司', 3);
INSERT INTO `hytto_cs`.`departments`(`id`, `name`, `parent_id`) VALUES (12, '海南子公司', 3);
INSERT INTO `hytto_cs`.`departments`(`id`, `name`, `parent_id`) VALUES (13, '四川子公司', 6);
INSERT INTO `hytto_cs`.`departments`(`id`, `name`, `parent_id`) VALUES (14, '重庆子公司', 6);
INSERT INTO `hytto_cs`.`departments`(`id`, `name`, `parent_id`) VALUES (15, '贵州子公司', 6);
INSERT INTO `hytto_cs`.`departments`(`id`, `name`, `parent_id`) VALUES (16, '云南子公司', 6);
INSERT INTO `hytto_cs`.`departments`(`id`, `name`, `parent_id`) VALUES (17, '成都办事处', 13);
INSERT INTO `hytto_cs`.`departments`(`id`, `name`, `parent_id`) VALUES (18, '广元办事处', 13);
INSERT INTO `hytto_cs`.`departments`(`id`, `name`, `parent_id`) VALUES (19, '雅安办事处', 13);
INSERT INTO `hytto_cs`.`departments`(`id`, `name`, `parent_id`) VALUES (20, '绵阳办事处', 13);

初始化闭包表

-- 初始化自身关系
INSERT INTO departments_closure_table (ancestor, descendant, depth)
SELECT id, id, 0
FROM departments;-- 初始化父子关系
INSERT INTO departments_closure_table (ancestor, descendant, depth)
SELECT ct.ancestor, d.id, ct.depth + 1
FROM departments_closure_table AS ct
JOIN departments AS d ON ct.descendant = d.parent_id
where ct.depth + 1 = 1;-- 初始化爷孙关系
INSERT INTO departments_closure_table (ancestor, descendant, depth)
SELECT ct.ancestor, d.id, ct.depth + 1
FROM departments_closure_table AS ct
JOIN departments AS d ON ct.descendant = d.parent_id
where ct.depth + 1 = 2;-- 初始化四代关系
INSERT INTO departments_closure_table (ancestor, descendant, depth)
SELECT ct.ancestor, d.id, ct.depth + 1
FROM departments_closure_table AS ct
JOIN departments AS d ON ct.descendant = d.parent_id
where ct.depth + 1 = 3;

或者如下初始化:

INSERT INTO departments_closure_table (ancestor, descendant, depth)
WITH RECURSIVE cte AS (SELECT id as ancestor, id as descendant, 0 as depthFROM departmentsUNION ALLSELECT cte.ancestor, departments.id, cte.depth + 1FROM cteJOIN departments ON cte.descendant = departments.parent_id
)
SELECT ancestor, descendant, depth
FROM cte
WHERE ancestor != descendant;

二、闭包表的查询

①、闭包表来进行树形结构的分页查询。假设我们想要按照部门ID升序进行分页查询,每页显示5个部门

SELECT d.*
FROM departments AS d
JOIN departments_closure_table AS ct ON d.id = ct.descendant
WHERE ct.ancestor = 1 -- 根部门的ID
ORDER BY d.id
LIMIT 0, 5;

在这里插入图片描述

三、闭包表的更新

①、清空现有闭包表

DELETE FROM departments_closure_table;

②、使用递归重新生成闭包表数据并插入到departments_closure_table表中:

INSERT INTO departments_closure_table (ancestor, descendant, depth)
WITH RECURSIVE cte AS (SELECT id, id, 0FROM departmentsUNION ALLSELECT cte.ancestor, departments.id, cte.depth + 1FROM cteJOIN departments ON cte.descendant = departments.parent_id
)
SELECT ancestor, descendant, depth
FROM cte
WHERE ancestor != descendant;

这篇关于闭包表(Closure Table)存储和查询树形数据结构的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/802571

相关文章

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

《数据结构(C语言版)第二版》第八章-排序(8.3-交换排序、8.4-选择排序)

8.3 交换排序 8.3.1 冒泡排序 【算法特点】 (1) 稳定排序。 (2) 可用于链式存储结构。 (3) 移动记录次数较多,算法平均时间性能比直接插入排序差。当初始记录无序,n较大时, 此算法不宜采用。 #include <stdio.h>#include <stdlib.h>#define MAXSIZE 26typedef int KeyType;typedef char In

ural 1026. Questions and Answers 查询

1026. Questions and Answers Time limit: 2.0 second Memory limit: 64 MB Background The database of the Pentagon contains a top-secret information. We don’t know what the information is — you

Mybatis中的like查询

<if test="templateName != null and templateName != ''">AND template_name LIKE CONCAT('%',#{templateName,jdbcType=VARCHAR},'%')</if>

速了解MySQL 数据库不同存储引擎

快速了解MySQL 数据库不同存储引擎 MySQL 提供了多种存储引擎,每种存储引擎都有其特定的特性和适用场景。了解这些存储引擎的特性,有助于在设计数据库时做出合理的选择。以下是 MySQL 中几种常用存储引擎的详细介绍。 1. InnoDB 特点: 事务支持:InnoDB 是一个支持 ACID(原子性、一致性、隔离性、持久性)事务的存储引擎。行级锁:使用行级锁来提高并发性,减少锁竞争