【图像超分】论文复现:Pytorch实现FSRCNN,包含详细实验流程和与SRCNN的比较

本文主要是介绍【图像超分】论文复现:Pytorch实现FSRCNN,包含详细实验流程和与SRCNN的比较,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 1. FSRCNN网络结构
  • 2. 训练FSRCNN
  • 3. FSRCNN模型测试
  • 4. 训练好的FSRCNN模型超分自己的图像


前言

论文地址:Accelerating the Super-Resolution Convolutional Neural Network

论文精读:

请配合上述论文精读文章使用,效果更佳!

代码地址:

不想理解原理,希望直接跑通然后应用到自己的图像数据的同学,请直接下载上面的代码,有训练好的模型,直接用即可。具体使用方式见代码中的README!有问题来本文评论区留言!

深度学习的模型训练一般遵循以下步骤:

  1. 准备数据集,以及数据预处理
  2. 搭建网络模型
  3. 设置参数并训练
  4. 测试训练好的模型
  5. 用训练好的模型测试自己的数据

硬件环境:windows11+RTX 2060(比这个高肯定没问题,我这个配置本机跑500个epoch一点问题没有,一会就跑完。但超分自己的图像时,如果图像很大,可能有内存溢出的错误
运行环境:jupyter notebook/pycharm(前者好处是分代码段运行,测试方法,适合学习用;后者适合跑完整项目用
pytorch环境:torch1.9.1+cuda11.1(其他版本没测试过,应该问题不大)

本文是在SRCNN的基础上进一步实现的,如果没看过前面SRCNN的复现文章,请先阅读那篇文章。

数据预处理与SRCNN完全相同,本文从搭建网络模型开始。

1. FSRCNN网络结构

在这里插入图片描述
简单回顾一下FSRCNN的改进:

  • 取消双三次插值,直接以低分辨率输入
  • 网络最后一层为反卷积层
  • SRCNN的非线性映射层改进为沙漏型的收缩、映射、扩展层
  • 激活函数由ReLU变成了PReLU
  • 与SRCNN相比,卷积核大小变小,但网络结构变深
  • 输入和输出的图大小可以不同

网络的整体结构为:Conv(5, d, 1)−PReLU −Conv(1, s, d)−PReLU −m×Conv(3, s, s)−PReLU − Conv(1, d, s) − PReLU − DeConv(9, 1, d)

我们使用论文中4.4提到的默认网络FSRCNN (56,12,4)来实验。

网络结构的定义如下:

class FSRCNN(nn.Module):def __init__(self, scale_factor, num_channels=1, d=56, s=12, m=4):super(FSRCNN, self).__init__()# 特征提取部分self.first_part = nn.Sequential(nn.Conv2d(num_channels, d, kernel_size=5, padding=5//2),nn.PReLU(d))# 收缩层self.mid_part = [nn.Conv2d(d, s, kernel_size=1), nn.PReLU(s)]# m个映射层for _ in range(m):self.mid_part.extend([nn.Conv2d(s, s, kernel_size=3, padding=3//2), nn.PReLU(s)])# 扩展层self.mid_part.extend([nn.Conv2d(s, d, kernel_size=1), nn.PReLU(d)])# 上面三个层构成中间层self.mid_part = nn.Sequential(*self.mid_part)# 反卷积nn.ConvTranspose2d,输入输出与特征提取层相同,output_padding防止输入输入图像大小不匹配self.last_part = nn.ConvTranspose2d(d, num_channels, kernel_size=9, stride=scale_factor, padding=9//2,output_padding=scale_factor-1)self._initialize_weights()# 初始权重都是均值为0标准差为0.001的高斯分布def _initialize_weights(self):for m in self.first_part:if isinstance(m, nn.Conv2d):nn.init.normal_(m.weight.data, mean=0.0, std=math.sqrt(2/(m.out_channels*m.weight.data[0][0].numel())))nn.init.zeros_(m.bias.data)for m in self.mid_part:if isinstance(m, nn.Conv2d):nn.init.normal_(m.weight.data, mean=0.0, std=math.sqrt(2/(m.out_channels*m.weight.data[0][0].numel())))nn.init.zeros_(m.bias.data)nn.init.normal_(self.last_part.weight.data, mean=0.0, std=0.001)nn.init.zeros_(self.last_part.bias.data)def forward(self, x):x = self.first_part(x)x = self.mid_part(x)x = self.last_part(x)return x

2. 训练FSRCNN

根据论文4.1部分训练策略章节:卷积层的学习率是0.001,反卷积层的学习率是0.0001。

参照之前文章中的SRCNN训练,我们实现了FSRCNN的训练:

model = FSRCNN(1).to(device)
criterion = nn.MSELoss()
# optimizer = optim.Adam(model.parameters(), lr=1e-2)
optimizer = optim.Adam(              [{"params": model.first_part.parameters(), "lr": 0.001},{"params": model.mid_part.parameters(), "lr": 0.001},{"params": model.last_part.parameters(), "lr": 0.0001},]
)
#scheduler = MultiStepLR(optimizer, milestones=[50, 75, 100], gamma=0.1) # 学习率调度器,在epoch在50,75,100时降低学习率
best_psnr = 0.0
each_psnr = []
for epoch in range(nb_epochs):# Trainepoch_loss = 0for iteration, batch in enumerate(trainloader):input, target = batch[0].to(device), batch[1].to(device)optimizer.zero_grad()out = model(input)loss = criterion(out, target)loss.backward()optimizer.step()epoch_loss += loss.item()print(f"Epoch {epoch}. Training loss: {epoch_loss / len(trainloader)}")# Valsum_psnr = 0.0sum_ssim = 0.0with torch.no_grad():for batch in valloader:input, target = batch[0].to(device), batch[1].to(device)out = model(input)loss = criterion(out, target)pr = psnr(loss)sm = ssim(input, out)sum_psnr += prsum_ssim += smprint(f"Average PSNR: {sum_psnr / len(valloader)} dB.")print(f"Average SSIM: {sum_ssim / len(valloader)} ")avg_psnr = sum_psnr / len(valloader)each_psnr.append(avg_psnr)if avg_psnr >= best_psnr:best_psnr = avg_psnrtorch.save(model, r"best_model_FSRCNN_2.pth")#scheduler.step()

数据的相关参数设置与SRCNN相同,放大倍数为2。训练500个epoch,PSNR稳定在28.43,SSIM稳定在0.9268。

在这里插入图片描述
可视化epoch与PSNR的关系:
在这里插入图片描述
有波动和梯度骤降是因为我设置了学习率调度器,取消学习率调度器后为平滑曲线。对于BSD200数据集来说,训练100个epoch的PSNR基本保持稳定,没必要训练500个epoch。

可视化的代码如下,与SRCNN中的画图代码基本一致:

epochs = range(0,nb_epochs)# plot画图,设置颜色和图例,legend设置图例样式,右下,字体大小
plt.plot(epochs,each_psnr,color='red',label='FSRCNN(trained on BSD200)')  
plt.legend(loc = 'lower right',prop={'family' : 'Times New Roman', 'size'   : 12})# 横纵轴文字内容以及字体样式
plt.xlabel("epoch",fontproperties='Times New Roman',size = 12)
plt.ylabel("Average test PSNR (dB)",fontproperties='Times New Roman',size=12)# 横纵轴刻度以及字体样式
plt.xlim(0,nb_epochs)
plt.ylim(20,29)
plt.yticks(fontproperties='Times New Roman', size=12)
plt.xticks(fontproperties='Times New Roman', size=12)# 网格样式
plt.grid(ls = '--')plt.show()

3. FSRCNN模型测试

测试代码如下:

BATCH_SIZE = 4
model_path = "best_model_FSRCNN_2.pth"
testset = DatasetFromFolder(r"./data/images/test", zoom_factor)
testloader = DataLoader(dataset=testset, batch_size=BATCH_SIZE,shuffle=False, num_workers=NUM_WORKERS)
sum_psnr = 0.0
sum_ssim = 0.0
model = torch.load(model_path).to(device)
criterion = nn.MSELoss()
with torch.no_grad():for batch in testloader:input, target = batch[0].to(device), batch[1].to(device)out = model(input)loss = criterion(out, target)pr = psnr(loss)sm = ssim(input, out)sum_psnr += prsum_ssim += sm
print(f"Test Average PSNR: {sum_psnr / len(testloader)} dB")
print(f"Test Average SSIM: {sum_ssim / len(testloader)} ")

结果为:
在这里插入图片描述
在相同数据集上测试,FSRCNN的PSNR高于SRCNN,但是SSIM更低。

4. 训练好的FSRCNN模型超分自己的图像

代码如下:

# 参数设置
zoom_factor = 1
model = "best_model_FSRCNN_2.pth"
image = "./SEM_image_test/6.jpg"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# 读取图片
img = Image.open(image).convert('YCbCr') # PIL类型,转成YCbCr
img = img.resize((int(img.size[0] * zoom_factor), int(img.size[1] * zoom_factor)), Image.BICUBIC) # 双三次插值放大
y, cb, cr = img.split() # 划分Y,cb,cr三个通道
img_to_tensor = transforms.ToTensor() # 获得一个ToTensor对象# view中-1的含义是该维度不明,让其自动计算, input是由torch.Tensor([1,h,w])变成torch.Tensor([1,1,h,w])
# 图像Tensor格式:(batch_size, channel, h, w)
input = img_to_tensor(y).view(1, -1, y.size[1], y.size[0]).to(device) # 将y通道变换成网络输入的tensor格式# 输出图片
model = torch.load(model).to(device) # 载入模型
out = model(input).cpu() # 模型输出
out_img_y = out[0].detach().numpy() # 返回新的三维张量并转成numpy
out_img_y *= 255.0 
out_img_y = out_img_y.clip(0, 255) # 取0-255内的值
out_img_y = Image.fromarray(np.uint8(out_img_y[0]), mode='L') # numpy转成PIL
out_img = Image.merge('YCbCr', [out_img_y, cb, cr]).convert('RGB') # 合并三个通道变成RGB格式# 绘图显示,上面的操作都是为了plt显示图像
fig, ax = plt.subplots(1, 2, figsize=(22, 10))
ax[0].imshow(img)
ax[0].set_title("原图")
ax[1].imshow(out_img)
ax[1].set_title("FSRCNN恢复结果")# 改dpi大小得到保存的图像清晰度,越大图片文件越大,质量越高;有的办法是保存成pdf,pdf放大不失真
plt.savefig(r"./SEM_image_test/6_FSRCNN_x1_result.png",dpi=1000,bbox_inches = 'tight')
plt.show()

在这里插入图片描述
视觉上感觉跟SRCNN差不多。

从指标上来看,用与SRCNN中提到的根据图像上每个像素计算PSNR和SSIM,结果为:
在这里插入图片描述
PSNR基本相同,但是SSIM降低很多。对于超分后的图像,经过FSRCNN的结构变化要比经过SRCNN大。即FSRCNN的性能更显著。

除此之外,通过对模型文件的大小观察,FSRCNN明显更小,但性能更好,也与论文相符。
在这里插入图片描述
后续将用91images数据集和其他数据集来测试模型,重点还是在于入门深度学习流程。

如果本文对你有所帮助,点个赞吧!

这篇关于【图像超分】论文复现:Pytorch实现FSRCNN,包含详细实验流程和与SRCNN的比较的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/802321

相关文章

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

最新版IDEA配置 Tomcat的详细过程

《最新版IDEA配置Tomcat的详细过程》本文介绍如何在IDEA中配置Tomcat服务器,并创建Web项目,首先检查Tomcat是否安装完成,然后在IDEA中创建Web项目并添加Web结构,接着,... 目录配置tomcat第一步,先给项目添加Web结构查看端口号配置tomcat    先检查自己的to

使用Nginx来共享文件的详细教程

《使用Nginx来共享文件的详细教程》有时我们想共享电脑上的某些文件,一个比较方便的做法是,开一个HTTP服务,指向文件所在的目录,这次我们用nginx来实现这个需求,本文将通过代码示例一步步教你使用... 在本教程中,我们将向您展示如何使用开源 Web 服务器 Nginx 设置文件共享服务器步骤 0 —

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里