【图像超分】论文复现:Pytorch实现FSRCNN,包含详细实验流程和与SRCNN的比较

本文主要是介绍【图像超分】论文复现:Pytorch实现FSRCNN,包含详细实验流程和与SRCNN的比较,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 1. FSRCNN网络结构
  • 2. 训练FSRCNN
  • 3. FSRCNN模型测试
  • 4. 训练好的FSRCNN模型超分自己的图像


前言

论文地址:Accelerating the Super-Resolution Convolutional Neural Network

论文精读:

请配合上述论文精读文章使用,效果更佳!

代码地址:

不想理解原理,希望直接跑通然后应用到自己的图像数据的同学,请直接下载上面的代码,有训练好的模型,直接用即可。具体使用方式见代码中的README!有问题来本文评论区留言!

深度学习的模型训练一般遵循以下步骤:

  1. 准备数据集,以及数据预处理
  2. 搭建网络模型
  3. 设置参数并训练
  4. 测试训练好的模型
  5. 用训练好的模型测试自己的数据

硬件环境:windows11+RTX 2060(比这个高肯定没问题,我这个配置本机跑500个epoch一点问题没有,一会就跑完。但超分自己的图像时,如果图像很大,可能有内存溢出的错误
运行环境:jupyter notebook/pycharm(前者好处是分代码段运行,测试方法,适合学习用;后者适合跑完整项目用
pytorch环境:torch1.9.1+cuda11.1(其他版本没测试过,应该问题不大)

本文是在SRCNN的基础上进一步实现的,如果没看过前面SRCNN的复现文章,请先阅读那篇文章。

数据预处理与SRCNN完全相同,本文从搭建网络模型开始。

1. FSRCNN网络结构

在这里插入图片描述
简单回顾一下FSRCNN的改进:

  • 取消双三次插值,直接以低分辨率输入
  • 网络最后一层为反卷积层
  • SRCNN的非线性映射层改进为沙漏型的收缩、映射、扩展层
  • 激活函数由ReLU变成了PReLU
  • 与SRCNN相比,卷积核大小变小,但网络结构变深
  • 输入和输出的图大小可以不同

网络的整体结构为:Conv(5, d, 1)−PReLU −Conv(1, s, d)−PReLU −m×Conv(3, s, s)−PReLU − Conv(1, d, s) − PReLU − DeConv(9, 1, d)

我们使用论文中4.4提到的默认网络FSRCNN (56,12,4)来实验。

网络结构的定义如下:

class FSRCNN(nn.Module):def __init__(self, scale_factor, num_channels=1, d=56, s=12, m=4):super(FSRCNN, self).__init__()# 特征提取部分self.first_part = nn.Sequential(nn.Conv2d(num_channels, d, kernel_size=5, padding=5//2),nn.PReLU(d))# 收缩层self.mid_part = [nn.Conv2d(d, s, kernel_size=1), nn.PReLU(s)]# m个映射层for _ in range(m):self.mid_part.extend([nn.Conv2d(s, s, kernel_size=3, padding=3//2), nn.PReLU(s)])# 扩展层self.mid_part.extend([nn.Conv2d(s, d, kernel_size=1), nn.PReLU(d)])# 上面三个层构成中间层self.mid_part = nn.Sequential(*self.mid_part)# 反卷积nn.ConvTranspose2d,输入输出与特征提取层相同,output_padding防止输入输入图像大小不匹配self.last_part = nn.ConvTranspose2d(d, num_channels, kernel_size=9, stride=scale_factor, padding=9//2,output_padding=scale_factor-1)self._initialize_weights()# 初始权重都是均值为0标准差为0.001的高斯分布def _initialize_weights(self):for m in self.first_part:if isinstance(m, nn.Conv2d):nn.init.normal_(m.weight.data, mean=0.0, std=math.sqrt(2/(m.out_channels*m.weight.data[0][0].numel())))nn.init.zeros_(m.bias.data)for m in self.mid_part:if isinstance(m, nn.Conv2d):nn.init.normal_(m.weight.data, mean=0.0, std=math.sqrt(2/(m.out_channels*m.weight.data[0][0].numel())))nn.init.zeros_(m.bias.data)nn.init.normal_(self.last_part.weight.data, mean=0.0, std=0.001)nn.init.zeros_(self.last_part.bias.data)def forward(self, x):x = self.first_part(x)x = self.mid_part(x)x = self.last_part(x)return x

2. 训练FSRCNN

根据论文4.1部分训练策略章节:卷积层的学习率是0.001,反卷积层的学习率是0.0001。

参照之前文章中的SRCNN训练,我们实现了FSRCNN的训练:

model = FSRCNN(1).to(device)
criterion = nn.MSELoss()
# optimizer = optim.Adam(model.parameters(), lr=1e-2)
optimizer = optim.Adam(              [{"params": model.first_part.parameters(), "lr": 0.001},{"params": model.mid_part.parameters(), "lr": 0.001},{"params": model.last_part.parameters(), "lr": 0.0001},]
)
#scheduler = MultiStepLR(optimizer, milestones=[50, 75, 100], gamma=0.1) # 学习率调度器,在epoch在50,75,100时降低学习率
best_psnr = 0.0
each_psnr = []
for epoch in range(nb_epochs):# Trainepoch_loss = 0for iteration, batch in enumerate(trainloader):input, target = batch[0].to(device), batch[1].to(device)optimizer.zero_grad()out = model(input)loss = criterion(out, target)loss.backward()optimizer.step()epoch_loss += loss.item()print(f"Epoch {epoch}. Training loss: {epoch_loss / len(trainloader)}")# Valsum_psnr = 0.0sum_ssim = 0.0with torch.no_grad():for batch in valloader:input, target = batch[0].to(device), batch[1].to(device)out = model(input)loss = criterion(out, target)pr = psnr(loss)sm = ssim(input, out)sum_psnr += prsum_ssim += smprint(f"Average PSNR: {sum_psnr / len(valloader)} dB.")print(f"Average SSIM: {sum_ssim / len(valloader)} ")avg_psnr = sum_psnr / len(valloader)each_psnr.append(avg_psnr)if avg_psnr >= best_psnr:best_psnr = avg_psnrtorch.save(model, r"best_model_FSRCNN_2.pth")#scheduler.step()

数据的相关参数设置与SRCNN相同,放大倍数为2。训练500个epoch,PSNR稳定在28.43,SSIM稳定在0.9268。

在这里插入图片描述
可视化epoch与PSNR的关系:
在这里插入图片描述
有波动和梯度骤降是因为我设置了学习率调度器,取消学习率调度器后为平滑曲线。对于BSD200数据集来说,训练100个epoch的PSNR基本保持稳定,没必要训练500个epoch。

可视化的代码如下,与SRCNN中的画图代码基本一致:

epochs = range(0,nb_epochs)# plot画图,设置颜色和图例,legend设置图例样式,右下,字体大小
plt.plot(epochs,each_psnr,color='red',label='FSRCNN(trained on BSD200)')  
plt.legend(loc = 'lower right',prop={'family' : 'Times New Roman', 'size'   : 12})# 横纵轴文字内容以及字体样式
plt.xlabel("epoch",fontproperties='Times New Roman',size = 12)
plt.ylabel("Average test PSNR (dB)",fontproperties='Times New Roman',size=12)# 横纵轴刻度以及字体样式
plt.xlim(0,nb_epochs)
plt.ylim(20,29)
plt.yticks(fontproperties='Times New Roman', size=12)
plt.xticks(fontproperties='Times New Roman', size=12)# 网格样式
plt.grid(ls = '--')plt.show()

3. FSRCNN模型测试

测试代码如下:

BATCH_SIZE = 4
model_path = "best_model_FSRCNN_2.pth"
testset = DatasetFromFolder(r"./data/images/test", zoom_factor)
testloader = DataLoader(dataset=testset, batch_size=BATCH_SIZE,shuffle=False, num_workers=NUM_WORKERS)
sum_psnr = 0.0
sum_ssim = 0.0
model = torch.load(model_path).to(device)
criterion = nn.MSELoss()
with torch.no_grad():for batch in testloader:input, target = batch[0].to(device), batch[1].to(device)out = model(input)loss = criterion(out, target)pr = psnr(loss)sm = ssim(input, out)sum_psnr += prsum_ssim += sm
print(f"Test Average PSNR: {sum_psnr / len(testloader)} dB")
print(f"Test Average SSIM: {sum_ssim / len(testloader)} ")

结果为:
在这里插入图片描述
在相同数据集上测试,FSRCNN的PSNR高于SRCNN,但是SSIM更低。

4. 训练好的FSRCNN模型超分自己的图像

代码如下:

# 参数设置
zoom_factor = 1
model = "best_model_FSRCNN_2.pth"
image = "./SEM_image_test/6.jpg"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# 读取图片
img = Image.open(image).convert('YCbCr') # PIL类型,转成YCbCr
img = img.resize((int(img.size[0] * zoom_factor), int(img.size[1] * zoom_factor)), Image.BICUBIC) # 双三次插值放大
y, cb, cr = img.split() # 划分Y,cb,cr三个通道
img_to_tensor = transforms.ToTensor() # 获得一个ToTensor对象# view中-1的含义是该维度不明,让其自动计算, input是由torch.Tensor([1,h,w])变成torch.Tensor([1,1,h,w])
# 图像Tensor格式:(batch_size, channel, h, w)
input = img_to_tensor(y).view(1, -1, y.size[1], y.size[0]).to(device) # 将y通道变换成网络输入的tensor格式# 输出图片
model = torch.load(model).to(device) # 载入模型
out = model(input).cpu() # 模型输出
out_img_y = out[0].detach().numpy() # 返回新的三维张量并转成numpy
out_img_y *= 255.0 
out_img_y = out_img_y.clip(0, 255) # 取0-255内的值
out_img_y = Image.fromarray(np.uint8(out_img_y[0]), mode='L') # numpy转成PIL
out_img = Image.merge('YCbCr', [out_img_y, cb, cr]).convert('RGB') # 合并三个通道变成RGB格式# 绘图显示,上面的操作都是为了plt显示图像
fig, ax = plt.subplots(1, 2, figsize=(22, 10))
ax[0].imshow(img)
ax[0].set_title("原图")
ax[1].imshow(out_img)
ax[1].set_title("FSRCNN恢复结果")# 改dpi大小得到保存的图像清晰度,越大图片文件越大,质量越高;有的办法是保存成pdf,pdf放大不失真
plt.savefig(r"./SEM_image_test/6_FSRCNN_x1_result.png",dpi=1000,bbox_inches = 'tight')
plt.show()

在这里插入图片描述
视觉上感觉跟SRCNN差不多。

从指标上来看,用与SRCNN中提到的根据图像上每个像素计算PSNR和SSIM,结果为:
在这里插入图片描述
PSNR基本相同,但是SSIM降低很多。对于超分后的图像,经过FSRCNN的结构变化要比经过SRCNN大。即FSRCNN的性能更显著。

除此之外,通过对模型文件的大小观察,FSRCNN明显更小,但性能更好,也与论文相符。
在这里插入图片描述
后续将用91images数据集和其他数据集来测试模型,重点还是在于入门深度学习流程。

如果本文对你有所帮助,点个赞吧!

这篇关于【图像超分】论文复现:Pytorch实现FSRCNN,包含详细实验流程和与SRCNN的比较的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/802321

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque