STM32存储左右互搏 SPI总线读写SD/MicroSD/TF卡

2024-03-12 11:12

本文主要是介绍STM32存储左右互搏 SPI总线读写SD/MicroSD/TF卡,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

STM32存储左右互搏 SPI总线读写SD/MicroSD/TF卡

SD/MicroSD/TF卡是基于FLASH的一种常见非易失存储单元,由接口协议电路和FLASH构成。市面上由不同尺寸和不同容量的卡,手机领域用的TF卡实际就是MicroSD卡,尺寸比SD卡小,而电路和协议操作则是一样。这里介绍STM32CUBEIDE开发平台HAL库SPI总线操作SD/MicroSD/TF卡的例程。

除了在硬件板子上集成SD/MicroSD/TF卡插槽的方式,也可以使用SD/MicroSD/TF卡模块,如下图所示为其中一种(支持MicroSD/TF卡):
在这里插入图片描述

SD/MicroSD/TF卡访问接口

SD/MicroSD/TF卡可以通过访问更快的SDIO专用协议接口或是访问慢一些的普通SPI接口进行操作,两种协议接口复用管脚。通过SPI接口进行操作,上面介绍的模块的接口连接特性如下:
在这里插入图片描述
共6个引脚(GND、VCC、MISO、MOSI、SCK、CS)与标准SPI接口对应。除了供电为5V,通讯管脚的电平由于模块内部进行了转换,直接和STM32的一个SPI接口连接即可。
在这里插入图片描述
如果不采用模块,直接集成卡槽使用,SDIO协议管脚和SPI协议管脚的复用关系如下:
在这里插入图片描述

例程采用STM32F401CCU6芯片(兼容STM32F401RCT6, 仅封装不同)对4GB的TF卡进行操作

STM32工程配置

首先建立基本工程并设置时钟:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
配置SPI1:
在这里插入图片描述
在这里插入图片描述
不配置DMA:
在这里插入图片描述
PA4管脚是通过软件代码控制的片选,单独配置为GPIO输出:
在这里插入图片描述
在这里插入图片描述

配置UART1做为通讯口:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
DMA不配置:
在这里插入图片描述
保存并生成初始代码:
在这里插入图片描述

STM32工程代码

UART串口printf打印输出实现参考:STM32 UART串口printf函数应用及浮点打印代码空间节省 (HAL)

建立SPI操作SD/MicroSD/TF卡库头文件SDdriver.h:

#include "main.h"
/*
CID	128bit	卡标识号;
RCA	16bit	相对卡地址(Relative card address):本地系统中卡的地址,动态变化。在主机初始的时候确定。SPI模式中没有;
CSD	128bit	卡描述数据:卡操作条件相关的信息数据;
SCR	64bit	SD配置寄存器:SD卡特定信息数据;
OCR	32bit	操作条件寄存器。
*/extern uint8_t SD_TYPE;//SD卡类型
#define ERR     	0x00
#define MMC				0x01
#define V1				0x02
#define V2				0x04
#define V2HC			0x06#define DUMMY_BYTE				 0xFF 
#define MSD_BLOCKSIZE			 512//CMD定义
#define CMD0    0       //卡复位
#define CMD1    1
#define CMD8    8       //命令8 ,SEND_IF_COND
#define CMD9    9       //命令9 ,读CSD数据
#define CMD10   10      //命令10,读CID数据
#define CMD12   12      //命令12,停止数据传输
#define CMD16   16      //命令16,设置SectorSize 应返回0x00
#define CMD17   17      //命令17,读sector
#define CMD18   18      //命令18,读Multi sector
#define CMD23   23      //命令23,设置多sector写入前预先擦除N个block
#define CMD24   24      //命令24,写sector
#define CMD25   25      //命令25,写Multi sector
#define CMD41   41      //命令41,应返回0x00
#define CMD55   55      //命令55,应返回0x01
#define CMD58   58      //命令58,读OCR信息
#define CMD59   59      //命令59,使能/禁止CRC,应返回0x00//数据写入回应字意义
#define MSD_DATA_OK                0x05
#define MSD_DATA_CRC_ERROR         0x0B
#define MSD_DATA_WRITE_ERROR       0x0D
#define MSD_DATA_OTHER_ERROR       0xFF
//SD卡回应标记字
#define MSD_RESPONSE_NO_ERROR      0x00
#define MSD_IN_IDLE_STATE          0x01
#define MSD_ERASE_RESET            0x02
#define MSD_ILLEGAL_COMMAND        0x04
#define MSD_COM_CRC_ERROR          0x08
#define MSD_ERASE_SEQUENCE_ERROR   0x10
#define MSD_ADDRESS_ERROR          0x20
#define MSD_PARAMETER_ERROR        0x40
#define MSD_RESPONSE_FAILURE       0xFFenum _CD_HOLD
{HOLD = 0,RELEASE = 1,
};typedef struct               /* Card Specific Data */
{uint8_t  CSDStruct;            /* CSD structure */uint8_t  SysSpecVersion;       /* System specification version */uint8_t  Reserved1;            /* Reserved */uint8_t  TAAC;                 /* Data read access-time 1 */uint8_t  NSAC;                 /* Data read access-time 2 in CLK cycles */uint8_t  MaxBusClkFrec;        /* Max. bus clock frequency */uint16_t CardComdClasses;      /* Card command classes */uint8_t  RdBlockLen;           /* Max. read data block length */uint8_t  PartBlockRead;        /* Partial blocks for read allowed */uint8_t  WrBlockMisalign;      /* Write block misalignment */uint8_t  RdBlockMisalign;      /* Read block misalignment */uint8_t  DSRImpl;              /* DSR implemented */uint8_t  Reserved2;            /* Reserved */uint32_t DeviceSize;           /* Device Size */uint8_t  MaxRdCurrentVDDMin;   /* Max. read current @ VDD min */uint8_t  MaxRdCurrentVDDMax;   /* Max. read current @ VDD max */uint8_t  MaxWrCurrentVDDMin;   /* Max. write current @ VDD min */uint8_t  MaxWrCurrentVDDMax;   /* Max. write current @ VDD max */uint8_t  DeviceSizeMul;        /* Device size multiplier */uint8_t  EraseGrSize;          /* Erase group size */uint8_t  EraseGrMul;           /* Erase group size multiplier */uint8_t  WrProtectGrSize;      /* Write protect group size */uint8_t  WrProtectGrEnable;    /* Write protect group enable */uint8_t  ManDeflECC;           /* Manufacturer default ECC */uint8_t  WrSpeedFact;          /* Write speed factor */uint8_t  MaxWrBlockLen;        /* Max. write data block length */uint8_t  WriteBlockPaPartial;  /* Partial blocks for write allowed */uint8_t  Reserved3;            /* Reserded */uint8_t  ContentProtectAppli;  /* Content protection application */uint8_t  FileFormatGrouop;     /* File format group */uint8_t  CopyFlag;             /* Copy flag (OTP) */uint8_t  PermWrProtect;        /* Permanent write protection */uint8_t  TempWrProtect;        /* Temporary write protection */uint8_t  FileFormat;           /* File Format */uint8_t  ECC;                  /* ECC code */uint8_t  CSD_CRC;              /* CSD CRC */uint8_t  Reserved4;            /* always 1*/
}
MSD_CSD;typedef struct				 /*Card Identification Data*/
{uint8_t  ManufacturerID;       /* ManufacturerID */uint16_t OEM_AppliID;          /* OEM/Application ID */uint32_t ProdName1;            /* Product Name part1 */uint8_t  ProdName2;            /* Product Name part2*/uint8_t  ProdRev;              /* Product Revision */uint32_t ProdSN;               /* Product Serial Number */uint8_t  Reserved1;            /* Reserved1 */uint16_t ManufactDate;         /* Manufacturing Date */uint8_t  CID_CRC;              /* CID CRC */uint8_t  Reserved2;            /* always 1 */
}
MSD_CID;typedef struct
{MSD_CSD CSD;MSD_CID CID;uint32_t Capacity;              /* Card Capacity */uint32_t BlockSize;             /* Card Block Size */uint16_t RCA;uint8_t CardType;uint32_t SpaceTotal;            /* Total space size in file system */uint32_t SpaceFree;      	     /* Free space size in file system */
}
MSD_CARDINFO, *PMSD_CARDINFO;extern MSD_CARDINFO SD0_CardInfo;int             SD_RST(void);
uint8_t		 	SD_init(void);
void 			SD_CS(uint8_t p);
uint32_t  	    SD_GetSectorCount(void);
uint8_t 		SD_GETCID (uint8_t *cid_data);
uint8_t 		SD_GETCSD(uint8_t *csd_data);
int 			MSD0_GetCardInfo(PMSD_CARDINFO SD0_CardInfo);
uint8_t			SD_ReceiveData(uint8_t *data, uint16_t len);
uint8_t 		SD_SendBlock(uint8_t*buf,uint8_t cmd);
uint8_t 		SD_ReadDisk(uint8_t*buf,uint32_t sector,uint8_t cnt);
uint8_t 		SD_WriteDisk(uint8_t*buf,uint32_t sector,uint8_t cnt);void SPI_setspeed(uint32_t speed);
uint8_t spi_readwrite(uint8_t Txdata);

建立SPI操作SD/MicroSD/TF卡库头文件SDdriver.c:

#include "SDdriver.h"extern SPI_HandleTypeDef hspi1;
extern void PY_Delay_us_t(uint32_t Delay);uint8_t SD_TYPE=0x00;
MSD_CARDINFO SD0_CardInfo;#define SD_CS_Pin GPIO_PIN_4
#define SD_CS_GPIO_Port GPIOA
#define SD_CS_EN HAL_GPIO_WritePin(SD_CS_GPIO_Port,SD_CS_Pin,GPIO_PIN_RESET)
#define SD_CS_DEN HAL_GPIO_WritePin(SD_CS_GPIO_Port,SD_CS_Pin,GPIO_PIN_SET)int SD_RST(void)
{uint8_t rst;SD_CS_DEN;PY_Delay_us_t(20000);SD_CS_EN;PY_Delay_us_t(1);spi_readwrite(CMD0 | 0x40);spi_readwrite(0 >> 24);spi_readwrite(0 >> 16);spi_readwrite(0 >> 8);spi_readwrite(0);spi_readwrite(0x95);for(uint32_t i=0; i<1000; i++){rst=spi_readwrite(0xFF);if((rst&0X80)==0) break;PY_Delay_us_t(100);}if((rst&0X80)==0) return 0x01;else return 0;
}int SD_sendcmd(uint8_t cmd,uint32_t arg,uint8_t crc)
{uint8_t rst;uint8_t idle;SD_CS_DEN;PY_Delay_us_t(20000);SD_CS_EN;PY_Delay_us_t(1);do{idle=spi_readwrite(0xFF);PY_Delay_us_t(1);}while(idle!=0xFF); //Check SD idle statusspi_readwrite(cmd | 0x40);spi_readwrite(arg >> 24);spi_readwrite(arg >> 16);spi_readwrite(arg >> 8);spi_readwrite(arg);spi_readwrite(crc);if(cmd==CMD12) spi_readwrite(0xFF); //Stop data transmissiondo{rst=spi_readwrite(0xFF);PY_Delay_us_t(1);}while(rst&0x80);return rst;
}
/////////////////////////////////////////////////////////////
//SD卡初始化
////////////////////////////////////////////////////////////
uint8_t SD_init(void)
{uint8_t rst;uint8_t buff[6] = {0};uint16_t retry; uint8_t i;SPI_setspeed(SPI_BAUDRATEPRESCALER_256);SD_CS_DEN;PY_Delay_us_t(1);for(retry=0;retry<10;retry++) //向总线最少发送74个脉冲,为了让SD卡正常启动 (唤醒SD卡){spi_readwrite(0xFF);};//发送新的命令之前,需要取消之前的片选,额外发多 8个 CLK (发送0xFF无效数据),结束之前的操作。//SD卡进入IDLE状态do{rst = SD_RST();PY_Delay_us_t(1);}while(rst!=0x01);//查看SD卡的类型SD_TYPE=0;rst = SD_sendcmd(CMD8, 0x1AA, 0x87);if(rst==0x01){for(i=0;i<4;i++) buff[i]=spi_readwrite(0xFF);	//Get trailing return value of R7 respif(buff[2]==0X01&&buff[3]==0XAA)//卡是否支持2.7~3.6V{retry=0XFFFE;do{SD_sendcmd(CMD55,0,0X01);	//发送CMD55rst=SD_sendcmd(CMD41,0x40000000,0X01);//发送CMD41}while(rst&&retry--);if(retry&&SD_sendcmd(CMD58,0,0X01)==0)//鉴别SD2.0卡版本开始{for(i=0;i<4;i++)buff[i]=spi_readwrite(0XFF);//得到OCR值if(buff[0]&0x40){SD_TYPE=V2HC;}else {SD_TYPE=V2;}						}}else{SD_sendcmd(CMD55,0,0X01);			//发送CMD55rst=SD_sendcmd(CMD41,0,0X01);	//发送CMD41if(rst<=1){SD_TYPE=V1;retry=0XFFFE;do //等待退出IDLE模式{SD_sendcmd(CMD55,0,0X01);	//发送CMD55rst=SD_sendcmd(CMD41,0,0X01);//发送CMD41}while(rst&&retry--);}else//MMC卡不支持CMD55+CMD41识别{SD_TYPE=MMC;//MMC V3retry=0XFFFE;do //等待退出IDLE模式{											    rst=SD_sendcmd(CMD1,0,0X01);//发送CMD1}while(rst&&retry--);}if(retry==0||SD_sendcmd(CMD16,512,0X01)!=0)SD_TYPE=ERR;//错误的卡}}SD_CS_DEN;SPI_setspeed(SPI_BAUDRATEPRESCALER_2);return SD_TYPE;
}//读取指定长度数据
uint8_t SD_ReceiveData(uint8_t *data, uint16_t len)
{uint8_t rst;SD_CS_EN;do{ rst = spi_readwrite(0xFF);PY_Delay_us_t(100);}while(rst != 0xFE);while(len--){*data = spi_readwrite(0xFF);data++;}spi_readwrite(0xFF);spi_readwrite(0xFF);return 0;
}//向sd卡写入一个数据包的内容 512字节
uint8_t SD_SendBlock(uint8_t*buf,uint8_t cmd)
{	uint16_t t;	uint8_t rst;do{rst=spi_readwrite(0xFF);}while(rst!=0xFF);spi_readwrite(cmd);if(cmd!=0XFD)//不是结束指令{for(t=0;t<512;t++)spi_readwrite(buf[t]);//提高速度,减少函数传参时间spi_readwrite(0xFF);//忽略crcspi_readwrite(0xFF);t=spi_readwrite(0xFF);//接收响应if((t&0x1F)!=0x05)return 2;//响应错误}						 									  					    return 0;//写入成功
}//获取CID信息
uint8_t SD_GETCID (uint8_t *cid_data)
{uint8_t rst;rst=SD_sendcmd(CMD10,0,0x01); //读取CID寄存器if(rst==0x00){rst=SD_ReceiveData(cid_data,16);}SD_CS_DEN;if(rst)return 1;else return 0;
}
//获取CSD信息
uint8_t SD_GETCSD(uint8_t *csd_data){uint8_t rst;rst=SD_sendcmd(CMD9,0,0x01);//发CMD9命令,读CSD寄存器if(rst==0){rst=SD_ReceiveData(csd_data, 16);//接收16个字节的数据}SD_CS_DEN;//取消片选if(rst)return 1;else return 0;
}
//获取SD卡的总扇区数
uint32_t SD_GetSectorCount(void)
{uint8_t csd[16];uint32_t Capacity;uint8_t n;uint16_t csize;  					    //取CSD信息,如果期间出错,返回0if(SD_GETCSD(csd)!=0) return 0;//如果为SDHC卡,按照下面方式计算if((csd[0]&0xC0)==0x40)	 //V2.00的卡{csize = csd[9] + ((uint16_t)csd[8] << 8) + 1;Capacity = (uint32_t)csize << 10;//得到扇区数}else//V1.XX的卡{n = (csd[5] & 15) + ((csd[10] & 128) >> 7) + ((csd[9] & 3) << 1) + 2;csize = (csd[8] >> 6) + ((uint16_t)csd[7] << 2) + ((uint16_t)(csd[6] & 3) << 10) + 1;Capacity= (uint32_t)csize << (n - 9);//得到扇区数}return Capacity;
}
int MSD0_GetCardInfo(PMSD_CARDINFO SD0_CardInfo)
{uint8_t rst;uint8_t CSD_Tab[16];uint8_t CID_Tab[16];/* Send CMD9, Read CSD */rst = SD_sendcmd(CMD9, 0, 0xFF);if(rst != 0x00){return rst;}if(SD_ReceiveData(CSD_Tab, 16)){return 1;}/* Send CMD10, Read CID */rst = SD_sendcmd(CMD10, 0, 0xFF);if(rst != 0x00){return rst;}if(SD_ReceiveData(CID_Tab, 16)){return 2;}  /* Byte 0 */SD0_CardInfo->CSD.CSDStruct = (CSD_Tab[0] & 0xC0) >> 6;SD0_CardInfo->CSD.SysSpecVersion = (CSD_Tab[0] & 0x3C) >> 2;SD0_CardInfo->CSD.Reserved1 = CSD_Tab[0] & 0x03;/* Byte 1 */SD0_CardInfo->CSD.TAAC = CSD_Tab[1] ;/* Byte 2 */SD0_CardInfo->CSD.NSAC = CSD_Tab[2];/* Byte 3 */SD0_CardInfo->CSD.MaxBusClkFrec = CSD_Tab[3];/* Byte 4 */SD0_CardInfo->CSD.CardComdClasses = CSD_Tab[4] << 4;/* Byte 5 */SD0_CardInfo->CSD.CardComdClasses |= (CSD_Tab[5] & 0xF0) >> 4;SD0_CardInfo->CSD.RdBlockLen = CSD_Tab[5] & 0x0F;/* Byte 6 */SD0_CardInfo->CSD.PartBlockRead = (CSD_Tab[6] & 0x80) >> 7;SD0_CardInfo->CSD.WrBlockMisalign = (CSD_Tab[6] & 0x40) >> 6;SD0_CardInfo->CSD.RdBlockMisalign = (CSD_Tab[6] & 0x20) >> 5;SD0_CardInfo->CSD.DSRImpl = (CSD_Tab[6] & 0x10) >> 4;SD0_CardInfo->CSD.Reserved2 = 0; /* Reserved */SD0_CardInfo->CSD.DeviceSize = (CSD_Tab[6] & 0x03) << 10;/* Byte 7 */SD0_CardInfo->CSD.DeviceSize |= (CSD_Tab[7]) << 2;/* Byte 8 */SD0_CardInfo->CSD.DeviceSize |= (CSD_Tab[8] & 0xC0) >> 6;SD0_CardInfo->CSD.MaxRdCurrentVDDMin = (CSD_Tab[8] & 0x38) >> 3;SD0_CardInfo->CSD.MaxRdCurrentVDDMax = (CSD_Tab[8] & 0x07);/* Byte 9 */SD0_CardInfo->CSD.MaxWrCurrentVDDMin = (CSD_Tab[9] & 0xE0) >> 5;SD0_CardInfo->CSD.MaxWrCurrentVDDMax = (CSD_Tab[9] & 0x1C) >> 2;SD0_CardInfo->CSD.DeviceSizeMul = (CSD_Tab[9] & 0x03) << 1;/* Byte 10 */SD0_CardInfo->CSD.DeviceSizeMul |= (CSD_Tab[10] & 0x80) >> 7;SD0_CardInfo->CSD.EraseGrSize = (CSD_Tab[10] & 0x7C) >> 2;SD0_CardInfo->CSD.EraseGrMul = (CSD_Tab[10] & 0x03) << 3;/* Byte 11 */SD0_CardInfo->CSD.EraseGrMul |= (CSD_Tab[11] & 0xE0) >> 5;SD0_CardInfo->CSD.WrProtectGrSize = (CSD_Tab[11] & 0x1F);/* Byte 12 */SD0_CardInfo->CSD.WrProtectGrEnable = (CSD_Tab[12] & 0x80) >> 7;SD0_CardInfo->CSD.ManDeflECC = (CSD_Tab[12] & 0x60) >> 5;SD0_CardInfo->CSD.WrSpeedFact = (CSD_Tab[12] & 0x1C) >> 2;SD0_CardInfo->CSD.MaxWrBlockLen = (CSD_Tab[12] & 0x03) << 2;/* Byte 13 */SD0_CardInfo->CSD.MaxWrBlockLen |= (CSD_Tab[13] & 0xc0) >> 6;SD0_CardInfo->CSD.WriteBlockPaPartial = (CSD_Tab[13] & 0x20) >> 5;SD0_CardInfo->CSD.Reserved3 = 0;SD0_CardInfo->CSD.ContentProtectAppli = (CSD_Tab[13] & 0x01);/* Byte 14 */SD0_CardInfo->CSD.FileFormatGrouop = (CSD_Tab[14] & 0x80) >> 7;SD0_CardInfo->CSD.CopyFlag = (CSD_Tab[14] & 0x40) >> 6;SD0_CardInfo->CSD.PermWrProtect = (CSD_Tab[14] & 0x20) >> 5;SD0_CardInfo->CSD.TempWrProtect = (CSD_Tab[14] & 0x10) >> 4;SD0_CardInfo->CSD.FileFormat = (CSD_Tab[14] & 0x0C) >> 2;SD0_CardInfo->CSD.ECC = (CSD_Tab[14] & 0x03);/* Byte 15 */SD0_CardInfo->CSD.CSD_CRC = (CSD_Tab[15] & 0xFE) >> 1;SD0_CardInfo->CSD.Reserved4 = 1;if(SD0_CardInfo->CardType == V2HC){/* Byte 7 */SD0_CardInfo->CSD.DeviceSize = (uint16_t)(CSD_Tab[8]) *256;/* Byte 8 */SD0_CardInfo->CSD.DeviceSize += CSD_Tab[9] ;}SD0_CardInfo->Capacity = SD0_CardInfo->CSD.DeviceSize * MSD_BLOCKSIZE * 1024;SD0_CardInfo->BlockSize = MSD_BLOCKSIZE;/* Byte 0 */SD0_CardInfo->CID.ManufacturerID = CID_Tab[0];/* Byte 1 */SD0_CardInfo->CID.OEM_AppliID = CID_Tab[1] << 8;/* Byte 2 */SD0_CardInfo->CID.OEM_AppliID |= CID_Tab[2];/* Byte 3 */SD0_CardInfo->CID.ProdName1 = CID_Tab[3] << 24;/* Byte 4 */SD0_CardInfo->CID.ProdName1 |= CID_Tab[4] << 16;/* Byte 5 */SD0_CardInfo->CID.ProdName1 |= CID_Tab[5] << 8;/* Byte 6 */SD0_CardInfo->CID.ProdName1 |= CID_Tab[6];/* Byte 7 */SD0_CardInfo->CID.ProdName2 = CID_Tab[7];/* Byte 8 */SD0_CardInfo->CID.ProdRev = CID_Tab[8];/* Byte 9 */SD0_CardInfo->CID.ProdSN = CID_Tab[9] << 24;/* Byte 10 */SD0_CardInfo->CID.ProdSN |= CID_Tab[10] << 16;/* Byte 11 */SD0_CardInfo->CID.ProdSN |= CID_Tab[11] << 8;/* Byte 12 */SD0_CardInfo->CID.ProdSN |= CID_Tab[12];/* Byte 13 */SD0_CardInfo->CID.Reserved1 |= (CID_Tab[13] & 0xF0) >> 4;/* Byte 14 */SD0_CardInfo->CID.ManufactDate = (CID_Tab[13] & 0x0F) << 8;/* Byte 15 */SD0_CardInfo->CID.ManufactDate |= CID_Tab[14];/* Byte 16 */SD0_CardInfo->CID.CID_CRC = (CID_Tab[15] & 0xFE) >> 1;SD0_CardInfo->CID.Reserved2 = 1;return 0;  
}//写SD卡
//buf:数据缓存区
//sector:起始扇区
//cnt:扇区数
//返回值:0,ok;其他,失败.
uint8_t SD_WriteDisk(uint8_t*buf,uint32_t sector,uint8_t cnt)
{uint8_t rst;if(SD_TYPE!=V2HC) sector *= 512;//转换为字节地址if(cnt==1){rst=SD_sendcmd(CMD24,sector,0X01);//读命令if(rst==0)//指令发送成功{rst=SD_SendBlock(buf,0xFE);//写512个字节}}else{if(SD_TYPE!=MMC){SD_sendcmd(CMD55,0,0X01);	SD_sendcmd(CMD23,cnt,0X01);//发送指令}rst=SD_sendcmd(CMD25,sector,0X01);//连续读命令if(rst==0){do{rst=SD_SendBlock(buf,0xFC);//接收512个字节buf+=512;  }while(--cnt && rst==0);rst=SD_SendBlock(0,0xFD);//接收512个字节}}   SD_CS_DEN;//取消片选return rst;//
}	
//读SD卡
//buf:数据缓存区
//sector:扇区
//cnt:扇区数
//返回值:0,ok;其他,失败.
uint8_t SD_ReadDisk(uint8_t*buf,uint32_t sector,uint8_t cnt)
{uint8_t rst;if(SD_TYPE!=V2HC)sector <<= 9;//转换为字节地址if(cnt==1){rst=SD_sendcmd(CMD17,sector,0X01);//读命令if(rst==0)//指令发送成功{rst=SD_ReceiveData(buf,512);//接收512个字节}}else{rst=SD_sendcmd(CMD18,sector,0X01);//连续读命令do{rst=SD_ReceiveData(buf,512);//接收512个字节buf+=512;  }while(--cnt && rst==0);SD_sendcmd(CMD12,0,0X01);	//发送停止命令}   SD_CS_DEN;//取消片选return rst;//
}uint8_t spi_readwrite(uint8_t Txdata)
{uint8_t rd = 0xa5;uint8_t td = Txdata;HAL_SPI_TransmitReceive(&hspi1, &td, &rd, 1 ,2700);return rd;
}
//SPI1波特率设置
void SPI_setspeed(uint32_t speed)
{hspi1.Init.BaudRatePrescaler = speed;
}

代码实现在main.c文件里,实现如下功能:

  1. 串口收到0x01指令,初始化SD/MicroSD/TF卡
  2. 串口收到0x02指令,写一扇区(512字节)数据
  3. 串口收到0x03指令,读一扇区(512字节)数据
  4. 串口收到0x04指令,读取CID信息
  5. 串口收到0x05指令,读取CSD信息
  6. 串口收到0x06指令,读取扇区数量

完整main.c代码如下:

/* USER CODE BEGIN Header */
/********************************************************************************* @file           : main.c* @brief          : Main program body******************************************************************************* @attention** Copyright (c) 2023 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "usart.h"
#include "SDdriver.h"
#include "string.h"
/* USER CODE END Includes *//* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
__IO float usDelayBase;
void PY_usDelayTest(void)
{__IO uint32_t firstms, secondms;__IO uint32_t counter = 0;firstms = HAL_GetTick()+1;secondms = firstms+1;while(uwTick!=firstms) ;while(uwTick!=secondms) counter++;usDelayBase = ((float)counter)/1000;
}void PY_Delay_us_t(uint32_t Delay)
{__IO uint32_t delayReg;__IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);delayReg = 0;while(delayReg!=usNum) delayReg++;
}void PY_usDelayOptimize(void)
{__IO uint32_t firstms, secondms;__IO float coe = 1.0;firstms = HAL_GetTick();PY_Delay_us_t(1000000) ;secondms = HAL_GetTick();coe = ((float)1000)/(secondms-firstms);usDelayBase = coe*usDelayBase;
}void PY_Delay_us(uint32_t Delay)
{__IO uint32_t delayReg;__IO uint32_t msNum = Delay/1000;__IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);if(msNum>0) HAL_Delay(msNum);delayReg = 0;while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PTD *//* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD *//* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM *//* USER CODE END PM *//* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi1;UART_HandleTypeDef huart1;/* USER CODE BEGIN PV */
uint8_t uart1_rx[16];
uint8_t cmd;
uint8_t SD_Status = 0;
/* USER CODE END PV *//* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
static void MX_USART1_UART_Init(void);
/* USER CODE BEGIN PFP *//* USER CODE END PFP *//* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
#define sector_byte_size 512
uint8_t sdbuffer[sector_byte_size];
uint8_t sdinfo[16];
/* USER CODE END 0 *//*** @brief  The application entry point.* @retval int*/
int main(void)
{/* USER CODE BEGIN 1 *//* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_SPI1_Init();MX_USART1_UART_Init();/* USER CODE BEGIN 2 */PY_usDelayTest();PY_usDelayOptimize();HAL_UART_Receive_IT(&huart1, uart1_rx, 1);/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){if(cmd==1) //SD Init{cmd = 0;SD_Status = SD_init();if(SD_Status == 0) printf("\r\nSD initial failure\r\n");else{printf("\r\nSD type number: %d\r\n", SD_Status);printf("MMC: 1\r\n");printf("V1: 2\r\n");printf("V2: 4\r\n");printf("V2HC: 6\r\n");}}else if(cmd==2) //Write one block{cmd = 0;if(SD_Status == 0) printf("\r\nSD initial failure\r\n");else{for(uint32_t i=0;i<sector_byte_size;i++){sdbuffer[i]=i;}SD_WriteDisk(sdbuffer, 0, 1);printf("\r\nSD write done\r\n");}}else if(cmd==3) //Read one block{cmd = 0;if(SD_Status == 0) printf("\r\nSD initial failure\r\n");else{memset(sdbuffer, 0 , sector_byte_size);SD_ReadDisk(sdbuffer, 0, 1);for(uint32_t j=0; j<sector_byte_size; j++){printf("%d ", sdbuffer[j]);}printf("\r\n");}}else if(cmd==4) //Get CID{cmd = 0;if(SD_Status == 0) printf("\r\nSD initial failure\r\n");else{if(SD_GETCID((uint8_t *)sdinfo)==0){printf("CID: ");for(uint32_t i=0; i<16; i++){printf("%.2x ", sdinfo[i]);}printf("\r\n");}}}else if(cmd==5) //Get CSD{cmd = 0;if(SD_Status == 0) printf("\r\nSD initial failure\r\n");else{if(SD_GETCSD((uint8_t *)sdinfo)==0){printf("CSD: ");for(uint32_t i=0; i<16; i++){printf("%.2x ", sdinfo[i]);}printf("\r\n");}}}else if(cmd==6) //Get sector number{cmd = 0;if(SD_Status == 0) printf("\r\nSD initial failure\r\n");else{printf("Sector number: %u in 512 bytes per sector\r\n", (unsigned int)SD_GetSectorCount());}}else;/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}/*** @brief System Clock Configuration* @retval None*/
void SystemClock_Config(void)
{RCC_OscInitTypeDef RCC_OscInitStruct = {0};RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};/** Configure the main internal regulator output voltage*/__HAL_RCC_PWR_CLK_ENABLE();__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);/** Initializes the RCC Oscillators according to the specified parameters* in the RCC_OscInitTypeDef structure.*/RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;RCC_OscInitStruct.HSEState = RCC_HSE_ON;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;RCC_OscInitStruct.PLL.PLLM = 25;RCC_OscInitStruct.PLL.PLLN = 336;RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;RCC_OscInitStruct.PLL.PLLQ = 7;if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK){Error_Handler();}/** Initializes the CPU, AHB and APB buses clocks*/RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK){Error_Handler();}
}/*** @brief SPI1 Initialization Function* @param None* @retval None*/
static void MX_SPI1_Init(void)
{/* USER CODE BEGIN SPI1_Init 0 *//* USER CODE END SPI1_Init 0 *//* USER CODE BEGIN SPI1_Init 1 *//* USER CODE END SPI1_Init 1 *//* SPI1 parameter configuration*/hspi1.Instance = SPI1;hspi1.Init.Mode = SPI_MODE_MASTER;hspi1.Init.Direction = SPI_DIRECTION_2LINES;hspi1.Init.DataSize = SPI_DATASIZE_8BIT;hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;hspi1.Init.NSS = SPI_NSS_SOFT;hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;hspi1.Init.TIMode = SPI_TIMODE_DISABLE;hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;hspi1.Init.CRCPolynomial = 10;if (HAL_SPI_Init(&hspi1) != HAL_OK){Error_Handler();}/* USER CODE BEGIN SPI1_Init 2 *//* USER CODE END SPI1_Init 2 */}/*** @brief USART1 Initialization Function* @param None* @retval None*/
static void MX_USART1_UART_Init(void)
{/* USER CODE BEGIN USART1_Init 0 *//* USER CODE END USART1_Init 0 *//* USER CODE BEGIN USART1_Init 1 *//* USER CODE END USART1_Init 1 */huart1.Instance = USART1;huart1.Init.BaudRate = 115200;huart1.Init.WordLength = UART_WORDLENGTH_8B;huart1.Init.StopBits = UART_STOPBITS_1;huart1.Init.Parity = UART_PARITY_NONE;huart1.Init.Mode = UART_MODE_TX_RX;huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;huart1.Init.OverSampling = UART_OVERSAMPLING_16;if (HAL_UART_Init(&huart1) != HAL_OK){Error_Handler();}/* USER CODE BEGIN USART1_Init 2 *//* USER CODE END USART1_Init 2 */}/*** @brief GPIO Initialization Function* @param None* @retval None*/
static void MX_GPIO_Init(void)
{GPIO_InitTypeDef GPIO_InitStruct = {0};/* GPIO Ports Clock Enable */__HAL_RCC_GPIOH_CLK_ENABLE();__HAL_RCC_GPIOA_CLK_ENABLE();/*Configure GPIO pin Output Level */HAL_GPIO_WritePin(SPI1_CS_GPIO_Port, SPI1_CS_Pin, GPIO_PIN_SET);/*Configure GPIO pin : SPI1_CS_Pin */GPIO_InitStruct.Pin = SPI1_CS_Pin;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;HAL_GPIO_Init(SPI1_CS_GPIO_Port, &GPIO_InitStruct);}/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{if(huart==&huart1){cmd = uart1_rx[0];HAL_UART_Receive_IT(&huart1, uart1_rx, 1);}}
/* USER CODE END 4 *//*** @brief  This function is executed in case of error occurrence.* @retval None*/
void Error_Handler(void)
{/* USER CODE BEGIN Error_Handler_Debug *//* User can add his own implementation to report the HAL error return state */__disable_irq();while (1){}/* USER CODE END Error_Handler_Debug */
}#ifdef  USE_FULL_ASSERT
/*** @brief  Reports the name of the source file and the source line number*         where the assert_param error has occurred.* @param  file: pointer to the source file name* @param  line: assert_param error line source number* @retval None*/
void assert_failed(uint8_t *file, uint32_t line)
{/* USER CODE BEGIN 6 *//* User can add his own implementation to report the file name and line number,ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

STM32例程测试

串口指令0x01测试效果如下:
在这里插入图片描述

串口指令0x02测试效果如下:
在这里插入图片描述

串口指令0x03测试效果如下:
在这里插入图片描述

串口指令0x04测试效果如下:
在这里插入图片描述

串口指令0x05测试效果如下:
在这里插入图片描述

串口指令0x06测试效果如下:
在这里插入图片描述

STM32例程下载

STM32F401CCU6 SPI总线读写SD/MicroSD/TF卡例程下载

–End–

这篇关于STM32存储左右互搏 SPI总线读写SD/MicroSD/TF卡的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/801079

相关文章

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

10. 文件的读写

10.1 文本文件 操作文件三大类: ofstream:写操作ifstream:读操作fstream:读写操作 打开方式解释ios::in为了读文件而打开文件ios::out为了写文件而打开文件,如果当前文件存在则清空当前文件在写入ios::app追加方式写文件ios::trunc如果文件存在先删除,在创建ios::ate打开文件之后令读写位置移至文件尾端ios::binary二进制方式

【STM32】SPI通信-软件与硬件读写SPI

SPI通信-软件与硬件读写SPI 软件SPI一、SPI通信协议1、SPI通信2、硬件电路3、移位示意图4、SPI时序基本单元(1)开始通信和结束通信(2)模式0---用的最多(3)模式1(4)模式2(5)模式3 5、SPI时序(1)写使能(2)指定地址写(3)指定地址读 二、W25Q64模块介绍1、W25Q64简介2、硬件电路3、W25Q64框图4、Flash操作注意事项软件SPI读写W2

速了解MySQL 数据库不同存储引擎

快速了解MySQL 数据库不同存储引擎 MySQL 提供了多种存储引擎,每种存储引擎都有其特定的特性和适用场景。了解这些存储引擎的特性,有助于在设计数据库时做出合理的选择。以下是 MySQL 中几种常用存储引擎的详细介绍。 1. InnoDB 特点: 事务支持:InnoDB 是一个支持 ACID(原子性、一致性、隔离性、持久性)事务的存储引擎。行级锁:使用行级锁来提高并发性,减少锁竞争

STM32(十一):ADC数模转换器实验

AD单通道: 1.RCC开启GPIO和ADC时钟。配置ADCCLK分频器。 2.配置GPIO,把GPIO配置成模拟输入的模式。 3.配置多路开关,把左面通道接入到右面规则组列表里。 4.配置ADC转换器, 包括AD转换器和AD数据寄存器。单次转换,连续转换;扫描、非扫描;有几个通道,触发源是什么,数据对齐是左对齐还是右对齐。 5.ADC_CMD 开启ADC。 void RCC_AD

STM32内部闪存FLASH(内部ROM)、IAP

1 FLASH简介  1 利用程序存储器的剩余空间来保存掉电不丢失的用户数据 2 通过在程序中编程(IAP)实现程序的自我更新 (OTA) 3在线编程(ICP把整个程序都更新掉) 1 系统的Bootloader写死了,只能用串口下载到指定的位置,启动方式也不方便需要配置BOOT引脚触发启动  4 IAP(自己写的Bootloader,实现程序升级) 1 比如蓝牙转串口,

FreeRTOS-基本介绍和移植STM32

FreeRTOS-基本介绍和STM32移植 一、裸机开发和操作系统开发介绍二、任务调度和任务状态介绍2.1 任务调度2.1.1 抢占式调度2.1.2 时间片调度 2.2 任务状态 三、FreeRTOS源码和移植STM323.1 FreeRTOS源码3.2 FreeRTOS移植STM323.2.1 代码移植3.2.2 时钟中断配置 一、裸机开发和操作系统开发介绍 裸机:前后台系

寻迹模块TCRT5000的应用原理和功能实现(基于STM32)

目录 概述 1 认识TCRT5000 1.1 模块介绍 1.2 电气特性 2 系统应用 2.1 系统架构 2.2 STM32Cube创建工程 3 功能实现 3.1 代码实现 3.2 源代码文件 4 功能测试 4.1 检测黑线状态 4.2 未检测黑线状态 概述 本文主要介绍TCRT5000模块的使用原理,包括该模块的硬件实现方式,电路实现原理,还使用STM32类

STM32 ADC+DMA导致写FLASH失败

最近用STM32G070系列的ADC+DMA采样时,遇到了一些小坑记录一下; 一、ADC+DMA采样时进入死循环; 解决方法:ADC-dma死循环问题_stm32 adc dma死机-CSDN博客 将ADC的DMA中断调整为最高,且增大ADCHAL_ADC_Start_DMA(&hadc1, (uint32_t*)adc_buffer, ADC_Buffer_Size); 的ADC_Bu