SplitFunctions (BOLT) - 优化阅读笔记

2024-03-12 11:12

本文主要是介绍SplitFunctions (BOLT) - 优化阅读笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

将函数拆分成更小的代码片段,从而执行更激进的代码段重排的优化

在文件 bolt/lib/Passes/SplitFunctions.cpp

相关选项释义默认
-split-all-cold尽可能多的分离冷的基本块false
-split-align-threshold对齐参数2
-split-functions主要功能选项, 分离函数到代码片段false
-split-threshold控制分离的片段的大小0
-split-strategy分离策略:
profile2: 依据采样文件
random2:随机?
randomN:随机分离成N个片段
all: 将函数分离成单独的BB块
profile2

–split-functions --split-strategy=all

1. 分割的逻辑

下面是一个并行执行的一个函数

void SplitFunctions::splitFunction(BinaryFunction &BF, SplitStrategy &S) {if (BF.empty())return;// 在 RunOnFunctios, 已根据 opts::SplitStrategy 对 Strategy 初始化了// 主要判断是否有采样文件等if (!S.canSplit(BF))return;// 先拷贝一份 BB 块FunctionLayout &Layout = BF.getLayout();BinaryFunction::BasicBlockOrderType PreSplitLayout(Layout.block_begin(),Layout.block_end());// ...BinaryFunction::BasicBlockOrderType NewLayout(Layout.block_begin(),Layout.block_end());// 接下来,遍历以检查哪些BB块不能被移动// Never outline the first basic block.NewLayout.front()->setCanOutline(false);for (BinaryBasicBlock *const BB : NewLayout) {if (!BB->canOutline())continue;// 在 aarch64 中不要拆分额外的入口点。它们可以通过使用 ADRs 进行引用,当发生这种情况时,由于 ADR 指令的有限范围,这些块不能被放置得太远if (BC.isAArch64() && BB->isEntryPoint()) {BB->setCanOutline(false);continue;}if (BF.hasEHRanges() && !opts::SplitEH) {// 我们不能移动异常处理块(或者说异常处理块的入口点)if (BB->isLandingPad()) {BB->setCanOutline(false);continue;}// 由于异常处理运行时无法处理拆分的函数,我们不能移动可能引发异常的块。// 但是,如果我们可以保证该块永远不会引发异常,那么将该块移动以减小函数大小是安全的for (MCInst &Instr : *BB) {if (BC.MIB->isInvoke(Instr)) {BB->setCanOutline(false);break;}}}}// 参考 1.1 更新 Layout 的索引BF.getLayout().updateLayoutIndices();// 根据不同的 split 算法设置BB所属的代码片段// profile2: FragmentNum::cold() --> 1// random2: 随机设置某个范围的 BB 为 cold// randomN: 随机分配BB到某个片段// all: 所有BB属于单独的片段S.fragment(NewLayout.begin(), NewLayout.end());// Make sure all non-outlineable blocks are in the main-fragment.for (BinaryBasicBlock *const BB : NewLayout) {if (!BB->canOutline())BB->setFragmentNum(FragmentNum::main());}// 按顺序排一下基本块if (opts::AggressiveSplitting) {// 我们可以移动的所有计数为 0 的区块都将进入函数的末尾。// 即使它们是自然形成的集群,并且出现在热门基本区块之间llvm::stable_sort(NewLayout, [&](const BinaryBasicBlock *const A,const BinaryBasicBlock *const B) {return A->getFragmentNum() < B->getFragmentNum();});} else if (BF.hasEHRanges() && !opts::SplitEH) {// 通常情况下,带有异常处理功能的函数在末尾都有异常处理块。// 我们无法移动起始位置,但可以将包含起始位置的 0 计数值块移动到末尾,从而方便拆分auto FirstLP = NewLayout.begin();while ((*FirstLP)->isLandingPad())++FirstLP;std::stable_sort(FirstLP, NewLayout.end(),[&](BinaryBasicBlock *A, BinaryBasicBlock *B) {return A->getFragmentNum() < B->getFragmentNum();});}// 让 BB 所属的代码片段编号递增FragmentNum CurrentFragment = NewLayout.back()->getFragmentNum();for (BinaryBasicBlock *const BB : reverse(NewLayout)) {if (BB->getFragmentNum() > CurrentFragment)BB->setFragmentNum(CurrentFragment);CurrentFragment = BB->getFragmentNum();}// 让代码片段编号保持连续if (!S.keepEmpty()) {FragmentNum CurrentFragment = FragmentNum::main();FragmentNum NewFragment = FragmentNum::main();for (BinaryBasicBlock *const BB : NewLayout) {if (BB->getFragmentNum() > CurrentFragment) {CurrentFragment = BB->getFragmentNum();NewFragment = FragmentNum(NewFragment.get() + 1);}BB->setFragmentNum(NewFragment);}}// 参考 1.2 BF.getLayout().update(NewLayout);// 对于共享对象,调用指令和相应的异常处理块必须放置在同一片段中。// 当我们拆分它们时,创建跳板异常处理块,它将重定向执行到真正的异常处理块......SplitBytesHot += HotSize;SplitBytesCold += ColdSize;

1.1 更新 Layout 的索引

通常用法,如在 bolt/lib/Passes/SplitFunctions.cpp 中:

BF.getLayout().updateLayoutIndices();
S.fragment(NewLayout.begin(), NewLayout.end());
// 这看起来是按顺序给BB的 LayoutIndex 按顺序赋值一个 index
// 并且初始化所有的BB所属的代码片段为0
void FunctionLayout::updateLayoutIndices() {unsigned BlockIndex = 0;for (FunctionFragment &FF : fragments()) {for (BinaryBasicBlock *const BB : FF) {BB->setLayoutIndex(BlockIndex++);BB->setFragmentNum(FF.getFragmentNum());}}
}

1.2 更新内存布局

通常用法,如在 bolt/lib/Passes/SplitFunctions.cpp 中:

BF.getLayout().update(NewLayout);
bool FunctionLayout::update(const ArrayRef<BinaryBasicBlock *> NewLayout) {// 检查要更新的 Layout 的 BB 块是否一样 以及 他们所属的代码片段是否一样const bool EqualBlockOrder = llvm::equal(Blocks, NewLayout);if (EqualBlockOrder) {const bool EqualPartitioning =llvm::all_of(fragments(), [](const FunctionFragment &FF) {return llvm::all_of(FF, [&](const BinaryBasicBlock *const BB) {return FF.Num == BB->getFragmentNum();});});if (EqualPartitioning)return false;}// 删除除main()代码片段外的其他片段clear();// 根据 NewLayout 里 BB 设置的代码片段编号新增对应的代码片段for (BinaryBasicBlock *const BB : NewLayout) {FragmentNum Num = BB->getFragmentNum();assert(Num >= Fragments.back()->getFragmentNum() &&"Blocks must be arranged such that fragments are monotonically ""increasing.");// Add empty fragments if necessarywhile (Fragments.back()->getFragmentNum() < Num)addFragment();// Set the next fragment to point one past the current BBaddBasicBlock(BB);}return true;
}

这篇关于SplitFunctions (BOLT) - 优化阅读笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/801074

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听