代码随想录算法训练营day18 | 513.找树左下角的值、112. 路径总和、106. 从中序与后序遍历序列构造二叉树

本文主要是介绍代码随想录算法训练营day18 | 513.找树左下角的值、112. 路径总和、106. 从中序与后序遍历序列构造二叉树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 513.找树左下角的值
    • 思路
    • 解题方法
    • 复杂度
    • Code
      • 递归
      • 迭代
  • 112. 路径总和
    • 思路
    • 解题方法
    • 复杂度
    • Code
  • 106. 从中序与后序遍历序列构造二叉树
    • 思路
    • 解题方法
    • 复杂度
    • Code

513.找树左下角的值

链接: 找树左下角的值

思路

树的最后一行找到最左边的值。

首先要是最后一行,然后是最左边的值。

如果使用递归法,如何判断是最后一行,其实就是深度最大的叶子节点一定是最后一行。

要找深度最大的叶子节点。

那么如何找最左边的呢?可以使用前序遍历(当然中序,后序都可以,因为本题没有 中间节点的处理逻辑,只要左优先就行),保证优先左边搜索,然后记录深度最大的叶子节点,此时就是树的最后一行最左边的值。

解题方法

递归:

  1. 确定递归函数的参数和返回值
    参数必须有要遍历的树的根节点,还有就是一个int型的变量用来记录最长深度。 这里就不需要返回值了,所以递归函数的返回类型为void。
    本题还需要类里的两个全局变量,maxLen用来记录最大深度,result记录最大深度最左节点的数值。

  2. 确定终止条件
    当遇到叶子节点的时候,就需要统计一下最大的深度了,所以需要遇到叶子节点来更新最大深度。

  3. 确定单层递归的逻辑
    在找最大深度的时候,递归的过程中依然要使用回溯

迭代:
使用层序遍历

复杂度

  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

Code

递归

class Solution {
public:int maxDepth = INT_MIN;int result;void traversal(TreeNode* root, int depth) {if (root->left == NULL && root->right == NULL) {if (depth > maxDepth) {maxDepth = depth;result = root->val;}return;}if (root->left) {depth++;traversal(root->left, depth);depth--; // 回溯}if (root->right) {depth++;traversal(root->right, depth);depth--; // 回溯}return;}int findBottomLeftValue(TreeNode* root) {traversal(root, 0);return result;}
};

迭代

class Solution {
public:int findBottomLeftValue(TreeNode* root) {queue<TreeNode*> que;if (root != NULL) que.push(root);int result = 0;while (!que.empty()) {int size = que.size();for (int i = 0; i < size; i++) {TreeNode* node = que.front();que.pop();if (i == 0) result = node->val; // 记录最后一行第一个元素if (node->left) que.push(node->left);if (node->right) que.push(node->right);}}return result;}
};

112. 路径总和

链接: 路径总和

思路

还是直接递归

解题方法

看代码

复杂度

  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

Code

class Solution {
private:bool traversal(TreeNode* cur, int count) {if (!cur->left && !cur->right && count == 0) return true; // 遇到叶子节点,并且计数为0if (!cur->left && !cur->right) return false; // 遇到叶子节点直接返回if (cur->left) { // 左count -= cur->left->val; // 递归,处理节点;if (traversal(cur->left, count)) return true;count += cur->left->val; // 回溯,撤销处理结果}if (cur->right) { // 右count -= cur->right->val; // 递归,处理节点;if (traversal(cur->right, count)) return true;count += cur->right->val; // 回溯,撤销处理结果}return false;}public:bool hasPathSum(TreeNode* root, int sum) {if (root == NULL) return false;return traversal(root, sum - root->val);}
};

106. 从中序与后序遍历序列构造二叉树

链接: link

思路

还是递归:
第一步:如果数组大小为零的话,说明是空节点了。

第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。

第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点

第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)

第五步:切割后序数组,切成后序左数组和后序右数组

第六步:递归处理左区间和右区间

解题方法

复杂度

  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

Code

class Solution {
private:TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {if (postorder.size() == 0) return NULL;// 后序遍历数组最后一个元素,就是当前的中间节点int rootValue = postorder[postorder.size() - 1];TreeNode* root = new TreeNode(rootValue);// 叶子节点if (postorder.size() == 1) return root;// 找到中序遍历的切割点int delimiterIndex;for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 切割中序数组// 左闭右开区间:[0, delimiterIndex)vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);// [delimiterIndex + 1, end)vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );// postorder 舍弃末尾元素postorder.resize(postorder.size() - 1);// 切割后序数组// 依然左闭右开,注意这里使用了左中序数组大小作为切割点// [0, leftInorder.size)vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());// [leftInorder.size(), end)vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());root->left = traversal(leftInorder, leftPostorder);root->right = traversal(rightInorder, rightPostorder);return root;}
public:TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {if (inorder.size() == 0 || postorder.size() == 0) return NULL;return traversal(inorder, postorder);}
};

另外一种写法:

class Solution {
private:// 存储 inorder 中值到索引的映射unordered_map<int, int> valToIndex;public:TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {for (int i = 0; i < inorder.size(); i++) {valToIndex[inorder[i]] = i;}return build(inorder, 0, inorder.size() - 1,postorder, 0, postorder.size() - 1);}/*定义:中序遍历数组为 inorder[inStart..inEnd],后序遍历数组为 postorder[postStart..postEnd],构造这个二叉树并返回该二叉树的根节点*/TreeNode* build(vector<int>& inorder, int inStart, int inEnd,vector<int>& postorder, int postStart, int postEnd) {if (inStart > inEnd) {return nullptr;}// root 节点对应的值就是后序遍历数组的最后一个元素int rootVal = postorder[postEnd];// rootVal 在中序遍历数组中的索引int index = valToIndex[rootVal];// 左子树的节点个数int leftSize = index - inStart;TreeNode* root = new TreeNode(rootVal);// 递归构造左右子树root->left = build(inorder, inStart, index - 1,postorder, postStart, postStart + leftSize - 1);root->right = build(inorder, index + 1, inEnd,postorder, postStart + leftSize, postEnd - 1);return root;}
};

这篇关于代码随想录算法训练营day18 | 513.找树左下角的值、112. 路径总和、106. 从中序与后序遍历序列构造二叉树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/800574

相关文章

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到