Pandas中的五种数据查询方法--【数值,列表,区间,条件,函数查询】

本文主要是介绍Pandas中的五种数据查询方法--【数值,列表,区间,条件,函数查询】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pandas查询数据

Pandas查询数据的几种方法

1.df.loc方法,根据行、列的标签值查询

2. df.iloc方法,根据行、列的数字位置查询

3. df.where方法

4. df.query方法

.loc既能查询,又能覆盖写入,强烈推荐!

Pandas使用df.loc查询数据的方法

1.使用单个label值查询数据

2.使用值列表批量查询

3.使用数值区间进行范围查询

4.使用条件表达式查询

5.调用函数查询

·以上查询方法,既适用于行,也适用于列·注意观察降维dataFrame>Series>值

import pandas as pd

1、读取数据

北京2018年全年天气预报

df=pd.read_csv('./datas/beijing_tianqi/beijing_tianqi_2018.csv',index_col='ymd')
df.head()
df.index

设置索引为日期,方便按日期筛选
inplace=True 表示直接在原存储空间上进行更改,不是重新开辟一块空间进行更改
 

#设置索引为日期,方便按日期筛选
#inplace=True 表示直接在原存储空间上进行更改,不是重新开辟一块空间进行更改
df.set_index('ymd',inplace=True)
df.head()

替换掉温度后的℃
其实还是使用切片操作,首先筛选出所有的行,在筛选出yWendu中一列,带着类型replace修改完之后,在对修改后的类型进行转换 

df.loc[:,'bWendu']=df['bWendu'].str.replace('℃','').astype('int32')
df.loc[:,'yWendu']=df['yWendu'].str.replace('℃','').astype('int32')
df.head()
df.dtypes

 值得注意的是:

AttributeError: Can only use .str accessor with string values!这种错误一般都是修改完之后了,不能在进行修改,说明已经修改过了

1、使用单个label值查询数据¶

行或列,都可以只传入单个值,实现精确匹配

查询一个单元格,只会返回一个数字值

#查询一个单元格,只会返回一个数字值
df.loc['2018-01-01','bWendu']

对于列的筛选,会产生一列,得到一个Series

#对于列的筛选,会产生一列,得到一个Series
df.loc['2018-01-01',['bWendu','yWendu']]

2、使用值列表批量查询 

得到Series

#得到Series
df.loc[['2018-01-02','2018-01-03','2018-01-04'],'bWendu']

得到DataFrame

#得到DataFrame
df.loc[['2018-01-02','2018-01-03','2018-01-04'],['bWendu','yWendu']]

 

3、使用数值区间进行范围查询

注意:区间既包括开始,也包括结束

行index按区间,切片操作的时候不用加双【】

列index按区间

行和列都按区间查询

#行index按区间,切片操作的时候不用加双【】
df.loc['2018-01-03':'2018-01-05','bWendu']
#列index按区间
df.loc['2018-01-03','bWendu':'fengxiang']
#行和列都按区间查询
df.loc['2018-01-03':'2018-01-05','bWendu':'fengxiang']

 

4、使用条件表达式查询¶

bool列表的长度等于行数或者列数

简单条件查询,最低温度低于-10度的列表

#简单条件查询,最低温度低于-10度的列表
df.loc[df['yWendu']<-10,:]

观察这里的boolean条件

#观察这里的boolean条件
df['yWendu']<-10

 

复杂条件查询,查完美天气

注意,组合条件&符号合并,每个条件判断都得带括号

查询最高温度小于30度,最低温度大于15度,晴天,天气为优的数据

#查询最高温度小于30度,最低温度大于15度,晴天,天气为优的数据
df.loc[(df['bWendu']<=30) & (df['yWendu']>=15) & (df['tianqi']=='晴') & (df['aqiLevel']==1),:]

观察这里boolean的条件

#观察这里boolean的条件
(df['bWendu']<=30) & (df['yWendu']>=15) & (df['tianqi']=='晴') & (df['aqiLevel']==1)

 5、调用函数查询

直接写lambda表达式

# 直接写lambda表达式
df.loc[lambda df :(df['bWendu']<=30)&(df['yWendu']>=15),:]

直接编写函数,查询9月份,空气质量好的数据

#直接编写函数,查询9月份,空气质量好的数据
def query_mydata(df):return df.index.str.startswith('2018-09')&df['aqiLevel']==1
df.loc[query_mydata]

 

 

注意:

函数式编程的本质:函数自身可以像变量一样传递

这篇关于Pandas中的五种数据查询方法--【数值,列表,区间,条件,函数查询】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/799775

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

数据库oracle用户密码过期查询及解决方案

《数据库oracle用户密码过期查询及解决方案》:本文主要介绍如何处理ORACLE数据库用户密码过期和修改密码期限的问题,包括创建用户、赋予权限、修改密码、解锁用户和设置密码期限,文中通过代码介绍... 目录前言一、创建用户、赋予权限、修改密码、解锁用户和设置期限二、查询用户密码期限和过期后的修改1.查询用

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统