Python对头发二维建模(考虑风力、重力)

2024-03-12 01:44

本文主要是介绍Python对头发二维建模(考虑风力、重力),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、背景

二、代码


一、背景

数值方法被用于创建电影、游戏或其他媒体中的计算机图形。例如,生成“逼真”的烟雾、水或爆炸等动画。本文内容是对头发的模拟,要求考虑重力、风力的影响。

假设:
1、人的头部是一个半径为10厘米的球体。
2、每根头发都与球体的表面垂直相交。
3、作用在每根头发上的力包括重力(在-z方向上)和恒定的风力(在+x方向上)。

二、代码

#导入python包
import numpy as np
import matplotlib.pyplot as plt
import scipy.integrate
import scipy.optimizedef rhs_func_wrapper(f_x, f_g):'''输入:f_x风力、f_g重力输出:函数rhs_func,用于包装常微分方程'''def rhs_func(s, y):'''输入:s弧度(自变量)y即[角度θ,梯度u](因变量)'''theta = y[0]u = y[1]dyds = np.zeros_like(y)dyds[0] = u  #一阶导dyds[1] = s * f_g * np.cos(theta) + s * f_x * np.sin(theta) #二阶常微分方程,对应方程(3a)return dydsreturn rhs_funcdef shot(u0, theta_0, L, rhs_func):'''解决边界值问题(BVP)返回:s弧长、y包含角度和梯度的数组、sol是OdeSolution对象,表示常微分方程的解(描述弧长s和角度θ之间关系)'''y0 = np.array([theta_0, u0])interval = [0, L] solution = scipy.integrate.solve_ivp(rhs_func,  interval, #rhs_func中参数s的范围y0,  #初始条件max_step=1e-2, #设置步长dense_output=True)  #用于生成sol,可以用于在任意点插值解s, y, sol = solution.t, solution.y, solution.solreturn s, y, soldef shot_error_wrapper(theta_0, L, rhs_func):'''计算误差'''def shot_error(u0):s, y, sol = shot(u0, theta_0, L, rhs_func)phi = y[1, -1] #提取二维数组y中的梯度的最后一个元素,作为误差return phireturn shot_errordef coordinate_rhs_func_wrapper(theta_s):'''计算头发坐标的导数输入:theta_s表示一个描述弧长s和角度θ之间关系的OdeSolution对象'''def coordinate_rhs_func(s, y):'''输入:弧长s、y表示坐标(x,z)'''dyds = np.zeros_like(y) #初始化一个与y相同大小的数组dyds,用于存储导数theta = theta_s(s)[0]  #计算弧长s对应的角度theta,通过调用theta_s(s)获取,并取得返回值的第一个元素dyds[0] = np.cos(theta)  #求导公式dyds[1] = np.sin(theta)  #求导公式return dydsreturn coordinate_rhs_funcdef hair_bvp_2d(theta_0_list, L, R, f_x, f_g=0.1):'''输入:theta_0_list初始角度列表,L头发长度,R人头半径,f_x风力,f_g重力(默认为0.1)'''rhs_func = rhs_func_wrapper(f_x, f_g)x_list = [] #初始化两个空列表用于存储解z_list = []for theta_0 in theta_0_list:  #对于每根头发的初始角度theta_0进行以下步骤shot_error = shot_error_wrapper(theta_0, L, rhs_func)u0 = scipy.optimize.brentq(shot_error, -10, 10)  #在-10~10区间内找到误差最小的初始梯度u0s, y, sol = shot(u0, theta_0, L, rhs_func)coordinate_rhs_func = coordinate_rhs_func_wrapper(sol)y0 = np.array([R * np.cos(theta_0), R * np.sin(theta_0)])  #设置初始条件interval = [0, L]solution = scipy.integrate.solve_ivp(coordinate_rhs_func, interval, y0,max_step=1e-2)x_list.append(solution.y[0]) #402个横坐标z_list.append(solution.y[1]) #402个纵坐标x = np.array(x_list)z = np.array(z_list)return x, zdef plot_hairs(x, z, R, title):#画人头:半径为10的圆,颜色为bluetheta_list = np.linspace(0, 2 * np.pi, 50)x_head = R * np.cos(theta_list)y_head = R * np.sin(theta_list)plt.plot(x_head, y_head, c='blue')#依次画每根头发,颜色为grayfor i in range(x.shape[0]): x_coords = x[i, :]z_coords = z[i, :]plt.plot(x_coords, z_coords, c='gray')ax = plt.gca()  #获取坐标轴实例ax.set_aspect(1) #纵横单位长度比例为1:1plt.xlabel('x') #横坐标名称plt.ylabel('z') #纵坐标名称plt.title(title) #图的名称plt.show()  #打印出来if __name__ == "__main__":L = 4  #头发长度:4cmR = 10  #人的头部,半径10cmtheta_0_list = np.linspace(0, np.pi, 20)  #0-π按20等分切分print('Task 1 - no gravity')x, z = hair_bvp_2d(theta_0_list, L, R, 0, 0)assert x.shape[0] == 20 and z.shape[0] == 20 and x.shape[1] == z.shape[1]  #断言,如果不满足条件,则中断程序plot_hairs(x, z, R, title='Task 1 - no gravity') #生成图像print('Task 2 - no wind')x, z = hair_bvp_2d(theta_0_list, L, R, 0)assert x.shape[0] == 20 and z.shape[0] == 20 and x.shape[1] == z.shape[1] plot_hairs(x, z, R, title='Task 2 - no wind') print('Task 3 - wind (f_x=0.1)')x, z = hair_bvp_2d(theta_0_list, L, R, 0.1)assert x.shape[0] == 20 and z.shape[0] == 20 and x.shape[1] == z.shape[1]plot_hairs(x, z, R, title='Task 3 - wind (f_x=0.1)')

运行结果:

无重力、无风力
有重力、无风力
有重力、有风力

这篇关于Python对头发二维建模(考虑风力、重力)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/799763

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核