优化LSTM(鹈鹕POA-LSTM)

2024-03-11 19:30
文章标签 优化 lstm poa 鹈鹕

本文主要是介绍优化LSTM(鹈鹕POA-LSTM),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 LSTM的核心是记忆单元(Memory Cell),其中包含了一个遗忘门(Forget Gate)、输入门(Input Gate)和输出门(Output Gate)。遗忘门决定了前一时刻记忆的保留程度,输入门决定了当前时刻输入的重要程度,输出门则控制了输出的内容。

POA-LSTM(鹈鹕优化长短期记忆网络)回归预测代码获取戳此处

LSTM的流程如下:

  1. 输入层接收序列数据,并通过全连接层传递给LSTM层。
  2. LSTM层中,通过遗忘门、输入门和输出门对输入信息进行筛选、更新和输出。
  3. 记忆单元根据遗忘门和输入门的控制,决定是否保留前一时刻的记忆,并将当前时刻的输入信息加入到记忆中。
  4. 经过计算和更新后,输出门控制着记忆单元中的信息输出到下一层或最终输出层。
  5. 根据网络的具体任务,在输出层进行适当的处理和预测

鹈鹕优化算法(Pelican Optimization Algorithm)是一种基于鹈鹕觅食行为的优化算法,用于解决优化问题。该算法模拟了鹈鹕觅食过程中的搜索行为和群体协作,以寻找最优解。

鹈鹕优化算法的原理如下:

初始化种群:随机生成一定数量的候选解(个体),每个个体代表一个潜在的解决方案。

评估适应度:根据问题的适应度函数,对每个个体进行评估,得到其适应度值。

个体行为更新:根据个体的当前位置和速度,计算其下一时刻的位置和速度,并更新个体的状态。

群体行为更新:根据个体之间的信息交流和合作,更新整个群体的状态。这包括通过觅食行为(Foraging Behavior)来搜索新的解空间,并通过交流行为(Communication Behavior)来分享信息和知识。​​​​​​​

重复迭代:重复进行个体和群体的行为更新,直到满足终止条件,如达到最大迭代次数或找到满意的解。​​​​​​​

输出最优解:根据最终种群中个体的适应度值,选择适应度最高的个体作为最优解。

鹈鹕优化法通过模拟鹈鹕觅食行为中的搜索和合作机制,以一种自适应的方式寻找最优解。个体之间通过搜索和信息交流来获取更多的解空间信息,从而提高整个群体的搜索效率和优化能力。

 鹈鹕优化算法优化lstm参数流程
以下是使用鹈鹕优化算法(Pelican Optimization Algorithm)来优化LSTM模型参数的基本流程:

1. 数据准备:首先,准备好用于训练和验证的数据集。将数据集划分为训练集和验证集,通常使用时间序列数据作为LSTM模型的输入。

2. 构建LSTM模型:使用深度学习框架(如TensorFlow、PyTorch等)构建LSTM模型。包括定义模型的结构、选择合适的激活函数、选择合适的损失函数等。

3. 定义适应度函数:根据LSTM模型的性能指标(如均方误差损失函数、准确率等),定义适应度函数。适应度函数的值越小越好。

4. 参数初始化:使用鹈鹕优化算法初始化LSTM模型的参数。初始化每个参数的取值范围,鹈鹕算法将根据这些范围内随机生成的初始参数进行优化。

5. 鹈鹕优化算法迭代:在每一代迭代中,通过计算适应度函数来评估当前最优参数的性能。然后,利用鹈鹕的独特搜索策略,更新参数值。

6. 终止条件:设置终止条件,例如达到最大迭代次数、适应度函数收敛等。

7. 模型评估和验证:使用验证集评估经过优化后的LSTM模型,计算性能指标(如准确率、均方误差等)来检验模型的性能。

8. 参数输出和应用:将经过优化的LSTM模型的参数保存下来,并应用于实际的预测任务中。

最终得到预测结果以预测为例图示

其中所优化的参数随迭代次数 的变化如图所示

这篇关于优化LSTM(鹈鹕POA-LSTM)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/798824

相关文章

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

从状态管理到性能优化:全面解析 Android Compose

文章目录 引言一、Android Compose基本概念1.1 什么是Android Compose?1.2 Compose的优势1.3 如何在项目中使用Compose 二、Compose中的状态管理2.1 状态管理的重要性2.2 Compose中的状态和数据流2.3 使用State和MutableState处理状态2.4 通过ViewModel进行状态管理 三、Compose中的列表和滚动

构建高性能WEB之HTTP首部优化

0x00 前言 在讨论浏览器优化之前,首先我们先分析下从客户端发起一个HTTP请求到用户接收到响应之间,都发生了什么?知己知彼,才能百战不殆。这也是作为一个WEB开发者,为什么一定要深入学习TCP/IP等网络知识。 0x01 到底发生什么了? 当用户发起一个HTTP请求时,首先客户端将与服务端之间建立TCP连接,成功建立连接后,服务端将对请求进行处理,并对客户端做出响应,响应内容一般包括响应

DAY16:什么是慢查询,导致的原因,优化方法 | undo log、redo log、binlog的用处 | MySQL有哪些锁

目录 什么是慢查询,导致的原因,优化方法 undo log、redo log、binlog的用处  MySQL有哪些锁   什么是慢查询,导致的原因,优化方法 数据库查询的执行时间超过指定的超时时间时,就被称为慢查询。 导致的原因: 查询语句比较复杂:查询涉及多个表,包含复杂的连接和子查询,可能导致执行时间较长。查询数据量大:当查询的数据量庞大时,即使查询本身并不复杂,也可能导致

MySQL 数据优化

MySQL 数据优化的指南 MySQL 数据库优化是一个复杂且重要的过程,它直接影响到系统的性能、可靠性和可扩展性。在处理大量数据或高并发请求时,数据库的优化尤为关键。通过合理的数据库设计、索引使用、查询优化和硬件调优,可以大幅提高 MySQL 的运行效率。本文将从几个主要方面详细介绍 MySQL 的优化技巧,帮助你在实际应用中提升数据库性能。 一、数据库设计优化 1. 数据库的规范化与反规