医学之器材

2024-03-11 12:50
文章标签 医学 器材

本文主要是介绍医学之器材,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、车内急救箱

2、连接医疗设备检查身体

3、仪器分析

4、解毒剂

5、除颤器

这篇关于医学之器材的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/797852

相关文章

如何将卷积神经网络(CNN)应用于医学图像分析:从分类到分割和检测的实用指南

引言 在现代医疗领域,医学图像已经成为疾病诊断和治疗规划的重要工具。医学图像的类型繁多,包括但不限于X射线、CT(计算机断层扫描)、MRI(磁共振成像)和超声图像。这些图像提供了对身体内部结构的详细视图,有助于医生在进行准确诊断和制定个性化治疗方案时获取关键的信息。 1. 医学图像分析的挑战 医学图像分析面临诸多挑战,其中包括: 图像数据的复杂性:医学图像通常具有高维度和复杂的结构

医学图像数据集与竞赛

1、数据集:一文道尽医学图像数据集与竞赛 https://www.cnblogs.com/yumoye/p/10512460.html 2、【医学影像系列:一】数据集合集 最新最全 https://blog.csdn.net/qq_31622015/article/details/90573874 3、医学数据集及机器学习项目 https://blog.csdn.net/weixin_4

MOELoRA —— 多任务医学应用中的参数高效微调方法

人工智能咨询培训老师叶梓 转载标明出处 在医疗场景中,LLMs可以应用于多种不同的任务,如医生推荐、诊断预测、药物推荐、医学实体识别、临床报告生成等。这些任务的输入和输出差异很大,给统一模型的微调带来了挑战。而且LLMs的参数众多,导致微调过程中时间和计算资源的消耗巨大。针对这些问题,来自西安交通大学、香港城市大学、腾讯YouTu Lab等机构的研究者们提出了一种新颖的参数高效微调框架——MOE

基于医学图像配准软件 ANTs(Advanced Normalization Tools)提取脑图像数值并与临床量表计算相关

前言: 神经影像学与临床评估的结合正在革新我们对神经精神疾病的理解。本博客聚焦于如何利用先进的医学图像配准软件ANTs(Advanced Normalization Tools)提取脑图像数值,并将其与临床量表进行相关性分析。 目录   一、准备掩模(Mask) 二、准备T-value map T-map 和 Z-map的转化 比较同一结果的T-map和Zmap 三、提取Mask

机器学习在医学中的应用

🎈边走、边悟🎈迟早会好 机器学习在医学中的应用是一个广泛且复杂的领域,涵盖了从基础研究到临床应用的多个方面。以下是一个万字总结的结构性思路,分章节深入探讨不同应用场景、技术方法、挑战与未来展望。 1. 引言 背景与发展:介绍医学领域的数字化转型以及机器学习的兴起,探讨其在医学中的潜力。机器学习的基本概念:简要介绍机器学习的基本原理、分类(监督学习、非监督学习、强化学习等)和常用算法(

2-79 基于matlab的卷积稀疏的形态成分分析的医学图像融合

基于matlab的卷积稀疏的形态成分分析的医学图像融合,基于卷积稀疏性的形态分量分析 (CS-MCA) 的稀疏表示 (SR) 模型,用于像素级医学图像融合。通过 CS-MCA 模型使用预先学习的字典获得其卡通和纹理组件的 CSR。然后,合并所有源图像的稀疏系数,并使用相应的字典重建融合分量。最后,实现融合图像计算。程序已调通,可直接运行。 2-79 卷积稀疏的形态成分分析 - 小红书 (xi

AI在医学领域:谷歌的HeAR生物声学模型

声学非语义属性的语音可以使机器学习模型执行诸如情绪识别、说话者识别和痴呆检测等副语言任务。脑卒中、帕金森病、阿尔茨海默病、脑瘫和肌萎缩侧索硬化症(ALS)等脑血管和神经退行性疾病也可以使用非语义语音模式,如发音、共鸣和发声等来检测和监测。与健康相关的非语义声学信号不仅限于对话语音数据。来自呼吸系统气流的健康相关声学线索,包括咳嗽声和呼吸模式等声音,可以用于健康监测。例如,临床医生使用

[医疗 AI ] 3D TransUNet:通过 Vision Transformer 推进医学图像分割

[医疗 AI ] 3D TransUNet:通过 Vision Transformer 推进医学图像分割’ 论文地址 - https://arxiv.org/pdf/2310.07781 0. 摘要 医学图像分割在推进医疗保健系统的疾病诊断和治疗计划中起着至关重要的作用。U 形架构,俗称 U-Net,已被证明在各种医学图像分割任务中非常成功。然而,U-Net 基于卷积的操作本身限制了其有效建模

AI在医学领域:在软组织和骨骼肿瘤放射学成像中的应用综述

软组织和骨骼肿瘤(Soft-tissue and bone tumours,STBT)是人体中较为罕见的肿瘤,包括良性和恶性病变。恶性STBT,约占所有肿瘤的1%。这些肿瘤可以发生在任何年龄和几乎所有解剖部位,起源于包括肌肉、脂肪、血管、软骨和骨骼在内的结缔组织细胞。STBT的罕见性以及它们的亚型多样性和不同的临床表现,为准确诊断和预后带来了巨大挑战。       放射学成像(包括核

MedGraphRAG:医学版 GraphRAG

MedGraphRAG:医学版 GraphRAG 提出我的解法思路 MedGraphRAG 大纲解法大纲 解法拆解U-retrieve 双向检索 分析性关联图创意视角MedGraphRAG 对比 传统知识图谱+大模型现在医疗知识图谱的问题MedGraphRAG的三层层级图结构,能不能让普通的医疗知识图谱,实现因果关系、机制解释?因果版 MedGraphRAG 对比 MedGraphRAG 和