【fastllm】学习框架,本地运行,速度还可以,可以成功运行chatglm2模型

2024-03-11 03:52

本文主要是介绍【fastllm】学习框架,本地运行,速度还可以,可以成功运行chatglm2模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1,关于 fastllm 项目

https://www.bilibili.com/video/BV1fx421k7Mz/?vd_source=4b290247452adda4e56d84b659b0c8a2

【fastllm】学习框架,本地运行,速度还可以,可以成功运行chatglm2模型

https://github.com/ztxz16/fastllm

🚀 纯c++实现,便于跨平台移植,可以在安卓上直接编译
🚀 ARM平台支持NEON指令集加速,X86平台支持AVX指令集加速,NVIDIA平台支持CUDA加速,各个平台速度都很快就是了
🚀 支持浮点模型(FP32), 半精度模型(FP16), 量化模型(INT8, INT4) 加速
🚀 支持多卡部署,支持GPU + CPU混合部署
🚀 支持Batch速度优化
🚀 支持并发计算时动态拼Batch
🚀 支持流式输出,很方便实现打字机效果
🚀 支持python调用
🚀 前后端分离设计,便于支持新的计算设备
🚀 目前支持ChatGLM系列模型,各种LLAMA模型(ALPACA, VICUNA等),BAICHUAN模型,QWEN模型,MOSS模型,MINICPM模型等

2,本地CPU编译也非常方便

git clone https://github.com/ztxz16/fastllm.gitcd fastllm
mkdir build
cd build
cmake .. -DUSE_CUDA=OFF
make -j

3,运行webui 可以进行交互问答

文件下载:
https://hf-mirror.com/huangyuyang/chatglm2-6b-int4.flm

./webui -p /data/home/test/hf_cache/chatglm2-6b-int4.flm
Load (200 / 200)
Warmup…
finish.

please open http://127.0.0.1:8081

在这里插入图片描述

也有打字效果,不知道是咋实现的。好像不是stream 方式的。

3,速度还可以,同时也支持其他的模型

文档地址:
https://github.com/ztxz16/fastllm/blob/master/docs/llama_cookbook.md

LLaMA 类模型转换参考

这个文档提供了了转换LLaMA同结构模型的方法。

LLaMA类模型有着基本相同的结构,但权重和prompt构造有差异。在fastllm中,通过转转模型时修改部分配置,实现对这些变体模型的支持、

声明

以下配置方案根据模型的源代码整理,不保证模型推理结果与原版完全一致。

修改方式

目前,转换脚本和两行加速方式均可用于llama类模型。但无论采用哪一种方式,都需要预留足够的内存(可以用swap空间)。

在float16模式下,转换时约需要4×参数量+1GB的空闲内存。

转换脚本

这里以支持推理各类Llama结构的基座模型为例,介绍如何应用本文档。

  • 方案一:修改转换脚本

以alpaca2flm.py为模板修改。在创建model之后添加:

    model = LlamaForCausalLM.from_pretrained(model_name).float()# config.json中定义了自己的model_type的需要添加conf = model.config.__dict__conf["model_type"] = "llama"# 接下来的部分各个Chat模型有差别,Base模型有的需要添加pre_prompt。torch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "", user_role = "", bot_role = "", history_sep = "", dtype = dtype)

其中,pre_promptuser_rolebot_rolehistory_sep分别为“开始的系统提示词(第一轮对话之前)”,“用户角色标志”,“用户话语结束标志及模型回复开始标志”,“两轮对话之间的分隔符”。

  • 方案二:修改config.json
    在下载的模型目录下,修改配置文件config.json中,修改"model_type"为llama,并增加下面的键-值对:
    "pre_prompt": "","user_role": "","bot_role": "","history_sep":  "",

如需添加Token ID而非字符串(类似baichuan-chat模型),可以使用“<FLM_FIX_TOKEN_{ID}>”的格式添加。

  • 执行脚本
python3 tools/alpaca2flm.py [输出文件名] [精度] [原始模型名称或路径]

对齐tokenizer

如果想使fastllm模型和原版transformers模型基本一致,最主要的操作是对齐tokenizer。
如果模型使用了huggingface 加速版本的Tokenizers(即模型目录中包含tokenizer.json并优先使用),目前的转换脚本仅在从本地文件转换时,能够对齐tokenizer

注意检查原始tokenizer的encode()方法返回的结果前面是否会加空格。如果原始tokenizer没有加空格,则需要设置:

    conf["tokenizer_add_dummy_prefix"] = False

Base Model

一部分模型需要制定bos_token_id,假设bos_token_id为1则可以配置如下:

    torch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "<FLM_FIX_TOKEN_1>", user_role = "", bot_role = "", history_sep = "", dtype = dtype)

Chat Model

对Chat Model,同样是修改转换脚本,或修改模型的config.json,以下是目前常见的chat model的配置:

InternLM(书生)

  • internlm/internlm-chat-7b
  • internlm/internlm-chat-7b v1.1
  • internlm/internlm-chat-20b
    conf = model.config.__dict__conf["model_type"] = "llama"torch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "<s><s>", user_role = "<|User|>:", bot_role = "<eoh>\n<|Bot|>:", history_sep = "<eoa>\n<s>", dtype = dtype)

可以直接使用llamalike2flm.py脚本转换:

cd build
python3 tools/llamalike2flm.py internlm-7b-fp16.flm float16 internlm/internlm-chat-20b #导出float16模型
python3 tools/llamalike2flm.py internlm-7b-int8.flm int8 internlm/internlm-chat-20b #导出int8模型
python3 tools/llamalike2flm.py internlm-7b-int4.flm int4 internlm/internlm-chat-20b #导出int4模型
python3 tools/llamalike2flm.py internlm-7b-int4.flm float16 internlm/internlm-chat-7b #导出internlm-chat-7b float16模型

XVERSE

  • xverse/XVERSE-13B-Chat
  • xverse/XVERSE-7B-Chat
    conf = model.config.__dict__conf["model_type"] = "llama"conf["tokenizer_add_dummy_prefix"] = Falsetorch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "", user_role = "Human: ", bot_role = "\n\nAssistant: ", history_sep = "<FLM_FIX_TOKEN_3>", dtype = dtype)

XVERSE-13B-Chat V1 版本需要对输入做NFKC规范化,fastllm暂不支持,因此需要使用原始tokenizer.

  • xverse/XVERSE-13B-256K

该模型没有将RoPE外推参数放到config中,因此需要手工指定:

    conf = model.config.__dict__conf["model_type"] = "llama"conf["rope_theta"] = 500000conf["rope_scaling.type"] = "dynamic"conf["rope_scaling.factor"] = 2.0conf["tokenizer_add_dummy_prefix"] = Falsetorch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "", user_role = "Human: ", bot_role = "\n\nAssistant: ", history_sep = "<FLM_FIX_TOKEN_3>", dtype = dtype)

其他 llama1 系列

  • Vicuna v1.1 v1.3
    torch2flm.tofile(exportPath, model, tokenizer, pre_prompt="A chat between a curious user and an artificial intelligence assistant. ""The assistant gives helpful, detailed, and polite answers to the user's questions. "user_role="USER: ", bot_role=" ASSISTANT:",  history_sep="<s>", dtype=dtype)
  • BiLLa
    torch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "\n", user_role = "Human: ", bot_role = "\nAssistant: ", history_sep = "\n", dtype = dtype)

llama2-chat

  • meta-llama/Llama-2-chat
ModelLlama2-chatLlama2-chat-hf
7Bmeta-llama/Llama-2-7b-chatmeta-llama/Llama-2-7b-chat-hf
13Bmeta-llama/Llama-2-13b-chatmeta-llama/Llama-2-13b-chat-hf
ModelCodeLlama-Instruct
7Bcodellama/CodeLlama-7b-Instruct-hf
13Bcodellama/CodeLlama-13b-Instruct-hf

官方示例代码中,可以不用系统提示语:

    torch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "<FLM_FIX_TOKEN_1>", user_role = "[INST] ", bot_role = " [/INST]", history_sep = " <FLM_FIX_TOKEN_2><FLM_FIX_TOKEN_1>", dtype = dtype)

Llama-2系列支持系统提示语需要修改代码,单轮可以使用以下带有系统提示语的版本:

    torch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "<FLM_FIX_TOKEN_1>[INST] <<SYS>>\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, " \"while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. " \"Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, " \"or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, " \"please don't share false information.\n<</SYS>>\n\n", user_role = " ", bot_role = " [/INST]", history_sep = " <FLM_FIX_TOKEN_2><FLM_FIX_TOKEN_1>", dtype = dtype)
  • ymcui/Chinese-Alpaca-2
ModelChinese-Alpaca-2Chinese-Alpaca-2-16K
7Bziqingyang/chinese-alpaca-2-7bziqingyang/chinese-alpaca-2-7b-16k
13Bziqingyang/chinese-alpaca-2-13bziqingyang/chinese-alpaca-2-13b-16k
    torch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "<FLM_FIX_TOKEN_1>[INST] <<SYS>>\nYou are a helpful assistant. 你是一个乐于助人的助手。\n<</SYS>>\n\n"user_role = " ", bot_role = " [/INST]", history_sep = " <FLM_FIX_TOKEN_2><FLM_FIX_TOKEN_1>", dtype = dtype)

RUC-GSAI/YuLan-Chat

  • Full
    • YuLan-Chat-2-13B
  • Delta (需要原始LLaMA)
    • YuLan-Chat-1-65B-v2
    • YuLan-Chat-1-65B-v1
    • YuLan-Chat-1-13B-v1
    torch2flm.tofile(exportPath, model, tokenizer, pre_prompt="The following is a conversation between a human and an AI assistant namely YuLan, developed by GSAI, Renmin University of China. " \"The AI assistant gives helpful, detailed, and polite answers to the user's questions.\n",user_role="[|Human|]:", bot_role="\n[|AI|]:", history_sep="\n", dtype=dtype)

WizardCoder

  • WizardCoder-Python-7B-V1.0
  • WizardCoder-Python-13B-V1.0
    torch2flm.tofile(exportPath, model, tokenizer, pre_prompt="Below is an instruction that describes a task. " \"Write a response that appropriately completes the request.\n\n",user_role="### Instruction:\n", bot_role="\n\n### Response:", history_sep="\n", dtype=dtype)

Deepseek Coder

  • Deepseek-Coder-1.3B-Instruct
  • Deepseek-Coder-6.7B-Instruct
  • Deepseek-Coder-7B-Instruct v1.5
    torch2flm.tofile(exportPath, model, tokenizer, pre_prompt="<FLM_FIX_TOKEN_32013>	You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, " \"and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, " \"and other non-computer science questions, you will refuse to answer.\n",user_role="### Instruction:\n", bot_role="\n### Response:\n", history_sep="\n<|EOT|>\n", dtype=dtype)

这篇关于【fastllm】学习框架,本地运行,速度还可以,可以成功运行chatglm2模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/796544

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre

SpringBoot配置Ollama实现本地部署DeepSeek

《SpringBoot配置Ollama实现本地部署DeepSeek》本文主要介绍了在本地环境中使用Ollama配置DeepSeek模型,并在IntelliJIDEA中创建一个Sprin... 目录前言详细步骤一、本地配置DeepSeek二、SpringBoot项目调用本地DeepSeek前言随着人工智能技

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python GUI框架中的PyQt详解

《PythonGUI框架中的PyQt详解》PyQt是Python语言中最强大且广泛应用的GUI框架之一,基于Qt库的Python绑定实现,本文将深入解析PyQt的核心模块,并通过代码示例展示其应用场... 目录一、PyQt核心模块概览二、核心模块详解与示例1. QtCore - 核心基础模块2. QtWid

Java终止正在运行的线程的三种方法

《Java终止正在运行的线程的三种方法》停止一个线程意味着在任务处理完任务之前停掉正在做的操作,也就是放弃当前的操作,停止一个线程可以用Thread.stop()方法,但最好不要用它,本文给大家介绍了... 目录前言1. 停止不了的线程2. 判断线程是否停止状态3. 能停止的线程–异常法4. 在沉睡中停止5

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统

OpenManus本地部署实战亲测有效完全免费(最新推荐)

《OpenManus本地部署实战亲测有效完全免费(最新推荐)》文章介绍了如何在本地部署OpenManus大语言模型,包括环境搭建、LLM编程接口配置和测试步骤,本文给大家讲解的非常详细,感兴趣的朋友一... 目录1.概况2.环境搭建2.1安装miniconda或者anaconda2.2 LLM编程接口配置2

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx