分布式执行引擎ray入门--(3)Ray Train

2024-03-11 03:20

本文主要是介绍分布式执行引擎ray入门--(3)Ray Train,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Ray Train中包含4个部分

  1. Training function: 包含训练模型逻辑的函数

  2. Worker: 用来跑训练的

  3. Scaling configuration: 配置

  4. Trainer: 协调以上三个部分

Ray Train+PyTorch

这一块比较建议直接去官网看diff,官网色块标注的比较清晰,非常直观。

import os
import tempfileimport torch
from torch.nn import CrossEntropyLoss
from torch.optim import Adam
from torch.utils.data import DataLoader
from torchvision.models import resnet18
from torchvision.datasets import FashionMNIST
from torchvision.transforms import ToTensor, Normalize, Composeimport ray.train.torchdef train_func(config):# Model, Loss, Optimizermodel = resnet18(num_classes=10)model.conv1 = torch.nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)# model.to("cuda")  # This is done by `prepare_model`# [1] Prepare model.model = ray.train.torch.prepare_model(model)criterion = CrossEntropyLoss()optimizer = Adam(model.parameters(), lr=0.001)# Datatransform = Compose([ToTensor(), Normalize((0.5,), (0.5,))])data_dir = os.path.join(tempfile.gettempdir(), "data")train_data = FashionMNIST(root=data_dir, train=True, download=True, transform=transform)train_loader = DataLoader(train_data, batch_size=128, shuffle=True)# [2] Prepare dataloader.train_loader = ray.train.torch.prepare_data_loader(train_loader)# Trainingfor epoch in range(10):for images, labels in train_loader:# This is done by `prepare_data_loader`!# images, labels = images.to("cuda"), labels.to("cuda")outputs = model(images)loss = criterion(outputs, labels)optimizer.zero_grad()loss.backward()optimizer.step()# [3] Report metrics and checkpoint.metrics = {"loss": loss.item(), "epoch": epoch}with tempfile.TemporaryDirectory() as temp_checkpoint_dir:torch.save(model.module.state_dict(),os.path.join(temp_checkpoint_dir, "model.pt"))ray.train.report(metrics,checkpoint=ray.train.Checkpoint.from_directory(temp_checkpoint_dir),)if ray.train.get_context().get_world_rank() == 0:print(metrics)# [4] Configure scaling and resource requirements.
scaling_config = ray.train.ScalingConfig(num_workers=2, use_gpu=True)# [5] Launch distributed training job.
trainer = ray.train.torch.TorchTrainer(train_func,scaling_config=scaling_config,# [5a] If running in a multi-node cluster, this is where you# should configure the run's persistent storage that is accessible# across all worker nodes.# run_config=ray.train.RunConfig(storage_path="s3://..."),
)
result = trainer.fit()# [6] Load the trained model.
with result.checkpoint.as_directory() as checkpoint_dir:model_state_dict = torch.load(os.path.join(checkpoint_dir, "model.pt"))model = resnet18(num_classes=10)model.conv1 = torch.nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)model.load_state_dict(model_state_dict)

模型 

  ray.train.torch.prepare_model() 

model = ray.train.torch.prepare_model(model)
相当于model.to(device_id or "cpu") +  DistributedDataParallel(model, device_ids=[device_id])

将model移动到合适的device上,同时实现分布式

数据

ray.train.torch.prepare_data_loader() 

报告 checkpoints 和 metrics

+import ray.train
+from ray.train import Checkpointdef train_func(config):...torch.save(model.state_dict(), f"{checkpoint_dir}/model.pth"))
+    metrics = {"loss": loss.item()} # Training/validation metrics.
+    checkpoint = Checkpoint.from_directory(checkpoint_dir) # Build a Ray Train checkpoint from a directory
+    ray.train.report(metrics=metrics, checkpoint=checkpoint)...
data_loader = ray.train.torch.prepare_data_loader(data_loader)

将batches移动到合适的device上,同时实现分布式sampler

配置 scale 和 GPUs

from ray.train import ScalingConfig
scaling_config = ScalingConfig(num_workers=2, use_gpu=True)

配置持久化存储

多节点分布式训练时必须指定,本地路径会有问题。

from ray.train import RunConfig# Local path (/some/local/path/unique_run_name)
run_config = RunConfig(storage_path="/some/local/path", name="unique_run_name")# Shared cloud storage URI (s3://bucket/unique_run_name)
run_config = RunConfig(storage_path="s3://bucket", name="unique_run_name")# Shared NFS path (/mnt/nfs/unique_run_name)
run_config = RunConfig(storage_path="/mnt/nfs", name="unique_run_name")

启动训练任务

from ray.train.torch import TorchTrainertrainer = TorchTrainer(train_func, scaling_config=scaling_config, run_config=run_config
)
result = trainer.fit()

这篇关于分布式执行引擎ray入门--(3)Ray Train的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/796446

相关文章

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

Golang使用etcd构建分布式锁的示例分享

《Golang使用etcd构建分布式锁的示例分享》在本教程中,我们将学习如何使用Go和etcd构建分布式锁系统,分布式锁系统对于管理对分布式系统中共享资源的并发访问至关重要,它有助于维护一致性,防止竞... 目录引言环境准备新建Go项目实现加锁和解锁功能测试分布式锁重构实现失败重试总结引言我们将使用Go作

Redis分布式锁使用及说明

《Redis分布式锁使用及说明》本文总结了Redis和Zookeeper在高可用性和高一致性场景下的应用,并详细介绍了Redis的分布式锁实现方式,包括使用Lua脚本和续期机制,最后,提到了RedLo... 目录Redis分布式锁加锁方式怎么会解错锁?举个小案例吧解锁方式续期总结Redis分布式锁如果追求

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

如何使用 Bash 脚本中的time命令来统计命令执行时间(中英双语)

《如何使用Bash脚本中的time命令来统计命令执行时间(中英双语)》本文介绍了如何在Bash脚本中使用`time`命令来测量命令执行时间,包括`real`、`user`和`sys`三个时间指标,... 使用 Bash 脚本中的 time 命令来统计命令执行时间在日常的开发和运维过程中,性能监控和优化是不

C#如何优雅地取消进程的执行之Cancellation详解

《C#如何优雅地取消进程的执行之Cancellation详解》本文介绍了.NET框架中的取消协作模型,包括CancellationToken的使用、取消请求的发送和接收、以及如何处理取消事件... 目录概述与取消线程相关的类型代码举例操作取消vs对象取消监听并响应取消请求轮询监听通过回调注册进行监听使用Wa

PHP执行php.exe -v命令报错的解决方案

《PHP执行php.exe-v命令报错的解决方案》:本文主要介绍PHP执行php.exe-v命令报错的解决方案,文中通过图文讲解的非常详细,对大家的学习或工作有一定的帮助,需要的朋友可以参考下... 目录执行phpandroid.exe -v命令报错解决方案执行php.exe -v命令报错-PHP War

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题: