【神经网络与深度学习】深度神经网络(DNN)

2024-03-11 02:44
文章标签 学习 深度 神经网络 dnn

本文主要是介绍【神经网络与深度学习】深度神经网络(DNN),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述

深度神经网络(Deep Neural Networks,DNN)是一种由多个隐藏层组成的神经网络模型。每个隐藏层由多个神经元组成,这些神经元通过权重和激活函数进行信息传递和计算。

深度神经网络通过多层的非线性变换,可以学习到更加抽象和复杂的特征表示。每一层都可以将输入数据转化为更高级的表示,从而更好地捕捉数据的特征和模式。通过不断叠加隐藏层,网络可以逐渐学习到更多的抽象特征,提高模型的表达能力。

深度神经网络在诸多领域中取得了重大突破和成功应用,如图像识别、语音识别、自然语言处理等。它能够处理大规模的数据,并具有强大的表示学习能力,能够自动提取和学习数据中的关键特征,从而实现更高水平的模式识别和预测能力。

然而,深度神经网络的训练也面临一些挑战,如梯度消失或梯度爆炸问题以及过拟合等。为了克服这些问题,出现了一些改进的深度神经网络结构和训练技巧,如卷积神经网络(CNN)、循环神经网络(RNN)、残差网络(ResNet)等。这些创新不断推动着深度神经网络的发展,并在各种领域中发挥着重要作用。

结构

神经网络层

首先通过图片来观察神经网络层的结构,第一张图是浅层神经网络,包括一个输入层,一个隐藏层和一个输出层。

  • 输入层:它所包含的神经元的个数等于单个实例所包含的特征数。只负责输入数据,没有激活函数。
  • 隐藏层:作用是提取特征,必须包含激活函数。
  • 输出层:它所包含的神经元的数目与标签的类别数有关,主要负责输出模型的预测值,它可以包含激活函数。

在这里插入图片描述

下图为深度神经网络,分为一个输出层,多个隐藏层和一个输出层。

在这里插入图片描述

神经元

神经元作为神经网络中最基本的单位,也有其独特的结构,如图所示,其中

  • x为输入,每一个连接上都有一个权重w,中间的节点为人工神经元节点;
  • δ是一个非线性变换,称为激活函数,目的是为了使人工神经元具有表示非线性关系的能力;
  • 参数b称之为偏置;output为人工神经元的输出。

在这里插入图片描述
公式如下:

在这里插入图片描述

激活函数

激活函数是神经网络中的一种非线性函数,作用于神经元的输入信号,将其转换为神经元的输出。激活函数在神经网络中起到了引入非线性变换的作用,增加了网络的表达能力。

激活函数的主要特点如下:

  • 非线性变换:激活函数对输入进行非线性变换,使得神经网络能够学习和表示非线性关系。如果没有激活函数,多个线性层堆叠起来的神经网络仍然只能表示线性关系。

  • 可微性:激活函数通常要求在大部分输入范围内是可导的,这是因为梯度下降等优化算法通常依赖于梯度的计算。可导的激活函数使得梯度可以传递并更新网络参数。

  • 非饱和性:一些激活函数具有非饱和性,即在输入较大或较小的情况下,能够保持较大的梯度,避免梯度消失问题。这有助于更好地传递误差信号和加速网络的收敛速度。

  • 映射范围:激活函数可以将输入信号映射到一定的输出范围内,如Sigmoid函数将输入映射到 (0, 1) 的范围内,而ReLU函数将负值映射为零。这有助于对输出进行限制或规范化。

常见的激活函数包括:

  1. Sigmoid函数:将输入映射到 (0, 1) 的范围内,具有平滑的非线性特性。
    在这里插入图片描述

  2. ReLU函数:在输入大于零时输出等于输入,小于零时输出为零,具有简单和高效的计算方式。
    在这里插入图片描述

  3. Tanh函数:将输入映射到 (-1, 1) 的范围内,形状与Sigmoid函数类似但对称。
    在这里插入图片描述

  4. Leaky ReLU函数:在输入小于零时引入一个小的斜率,避免了ReLU函数的部分问题。

  5. Softmax函数:用于多分类问题,在输出层将输入转化为概率分布。

三种激活函数的比较:
在这里插入图片描述

损失函数

损失函数是一个数学函数,用于衡量预测值与真实值之间的误差。它可以帮助我们确定模型的预测结果是否准确,并且可以用来评估模型的性能。

损失函数是深度学习中的一个关键因素,它可以帮助我们评估模型的性能并且用于调整模型的参数。选择合适的损失函数能够提高模型的性能,并有助于解决复杂的问题。

常见的损失函数:
在这里插入图片描述

内容来自视频:
深度神经网络的结构

这篇关于【神经网络与深度学习】深度神经网络(DNN)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/796356

相关文章

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree