计算机程序的思维逻辑 (67)

2024-03-10 18:38

本文主要是介绍计算机程序的思维逻辑 (67),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上节介绍了多线程之间竞争访问同一个资源的问题及解决方案synchronized,我们提到,多线程之间除了竞争,还经常需要相互协作,本节就来介绍Java中多线程协作的基本机制wait/notify。

都有哪些场景需要协作?wait/notify是什么?如何使用?实现原理是什么?协作的核心是什么?如何实现各种典型的协作场景?由于内容较多,我们分为上下两节来介绍。

我们先来看看都有哪些协作的场景。

协作的场景

多线程之间需要协作的场景有很多,比如说:

  • 生产者/消费者协作模式:这是一种常见的协作模式,生产者线程和消费者线程通过共享队列进行协作,生产者将数据或任务放到队列上,而消费者从队列上取数据或任务,如果队列长度有限,在队列满的时候,生产者需要等待,而在队列为空的时候,消费者需要等待。
  • 同时开始:类似运动员比赛,在听到比赛开始枪响后同时开始,在一些程序,尤其是模拟仿真程序中,要求多个线程能同时开始。
  • 等待结束:主从协作模式也是一种常见的协作模式,主线程将任务分解为若干个子任务,为每个子任务创建一个线程,主线程在继续执行其他任务之前需要等待每个子任务执行完毕。
  • 异步结果:在主从协作模式中,主线程手工创建子线程的写法往往比较麻烦,一种常见的模式是将子线程的管理封装为异步调用,异步调用马上返回,但返回的不是最终的结果,而是一个一般称为Promise或Future的对象,通过它可以在随后获得最终的结果。
  • 集合点:类似于学校或公司组团旅游,在旅游过程中有若干集合点,比如出发集合点,每个人从不同地方来到集合点,所有人到齐后进行下一项活动,在一些程序,比如并行迭代计算中,每个线程负责一部分计算,然后在集合点等待其他线程完成,所有线程到齐后,交换数据和计算结果,再进行下一次迭代。

我们会探讨如何实现这些协作场景,在此之前,我们先来了解协作的基本方法wait/notify。

wait/notify

我们知道,Java的根父类是Object,Java在Object类而非Thread类中,定义了一些线程协作的基本方法,使得每个对象都可以调用这些方法,这些方法有两类,一类是wait,另一类是notify。

主要有两个wait方法:

public final void wait() throws InterruptedException
public final native void wait(long timeout) throws InterruptedException;

一个带时间参数,单位是毫秒,表示最多等待这么长时间,参数为0表示无限期等待。一个不带时间参数,表示无限期等待,实际就是调用wait(0)。在等待期间都可以被中断,如果被中断,会抛出InterruptedException,关于中断及中断处理,我们在下节介绍,本节暂时忽略该异常。

wait实际上做了什么呢?它在等待什么?上节我们说过,每个对象都有一把锁和等待队列,一个线程在进入synchronized代码块时,会尝试获取锁,获取不到的话会把当前线程加入等待队列中,其实,除了用于锁的等待队列,每个对象还有另一个等待队列,表示条件队列,该队列用于线程间的协作。调用wait就会把当前线程放到条件队列上并阻塞,表示当前线程执行不下去了,它需要等待一个条件,这个条件它自己改变不了,需要其他线程改变。当其他线程改变了条件后,应该调用Object的notify方法:

public final native void notify();
public final native void notifyAll();

notify做的事情就是从条件队列中选一个线程,将其从队列中移除并唤醒,notifyAll和notify的区别是,它会移除条件队列中所有的线程并全部唤醒。

我们来看个简单的例子,一个线程启动后,在执行一项操作前,它需要等待主线程给它指令,收到指令后才执行,代码如下:

public class WaitThread extends Thread {
private volatile boolean fire = false;
@Override
public void run() {
try {
synchronized (this) {
while (!fire) {
wait();
}
}
System.out.println("fired");
} catch (InterruptedException e) {
}
}
public synchronized void fire() {
this.fire = true;
notify();
}
public static void main(String[] args) throws InterruptedException {
WaitThread waitThread = new WaitThread();
waitThread.start();
Thread.sleep(1000);
System.out.println("fire");
waitThread.fire();
}
}

示例代码中有两个线程,一个是主线程,一个是WaitThread,协作的条件变量是fire,WaitThread等待该变量变为true,在不为true的时候调用wait,主线程设置该变量并调用notify。

两个线程都要访问协作的变量fire,容易出现竞态条件,所以相关代码都需要被synchronized保护。实际上,wait/notify方法只能在synchronized代码块内被调用,如果调用wait/notify方法时,当前线程没有持有对象锁,会抛出异常java.lang.IllegalMonitorStateException。

你可能会有疑问,如果wait必须被synchronzied保护,那一个线程在wait时,另一个线程怎么可能调用同样被synchronzied保护的notify方法呢?它不需要等待锁吗?我们需要进一步理解wait的内部过程,虽然是在synchronzied方法内,但调用wait时,线程会释放对象锁,wait的具体过程是:

  1. 把当前线程放入条件等待队列,释放对象锁,阻塞等待,线程状态变为WAITING或TIMED_WAITING
  2. 等待时间到或被其他线程调用notify/notifyAll从条件队列中移除,这时,要重新竞争对象锁
    • 如果能够获得锁,线程状态变为RUNNABLE,并从wait调用中返回
    • 否则,该线程加入对象锁等待队列,线程状态变为BLOCKED,只有在获得锁后才会从wait调用中返回

线程从wait调用中返回后,不代表其等待的条件就一定成立了,它需要重新检查其等待的条件,一般的调用模式是:

synchronized (obj) {
while (条件不成立)
obj.wait();
... // 执行条件满足后的操作
}

比如,上例中的代码是:

synchronized (this) {
while (!fire) {
wait();
}
}

调用notify会把在条件队列中等待的线程唤醒并从队列中移除,但它不会释放对象锁,也就是说,只有在包含notify的synchronzied代码块执行完后,等待的线程才会从wait调用中返回。

简单总结一下,wait/notify方法看上去很简单,但往往难以理解wait等的到底是什么,而notify通知的又是什么,我们需要知道,它们与一个共享的条件变量有关,这个条件变量是程序自己维护的,当条件不成立时,线程调用wait进入条件等待队列,另一个线程修改了条件变量后调用notify,调用wait的线程唤醒后需要重新检查条件变量。从多线程的角度看,它们围绕共享变量进行协作,从调用wait的线程角度看,它阻塞等待一个条件的成立。我们在设计多线程协作时,需要想清楚协作的共享变量和条件是什么,这是协作的核心。接下来,我们通过一些场景来进一步理解wait/notify的应用,本节只介绍生产者/消费者模式,下节介绍更多模式。

生产者/消费者模式

在生产者/消费者模式中,协作的共享变量是队列,生产者往队列上放数据,如果满了就wait,而消费者从队列上取数据,如果队列为空也wait。我们将队列作为单独的类进行设计,代码如下:

static class MyBlockingQueue<E> {
private Queue<E> queue = null;
private int limit;
public MyBlockingQueue(int limit) {
this.limit = limit;
queue = new ArrayDeque<>(limit);
}
public synchronized void put(E e) throws InterruptedException {
while (queue.size() == limit) {
wait();
}
queue.add(e);
notifyAll();
}
public synchronized E take() throws InterruptedException {
while (queue.isEmpty()) {
wait();
}
E e = queue.poll();
notifyAll();
return e;
}
}

MyBlockingQueue是一个长度有限的队列,长度通过构造方法的参数进行传递,有两个方法put和take。put是给生产者使用的,往队列上放数据,满了就wait,放完之后调用notifyAll,通知可能的消费者。take是给消费者使用的,从队列中取数据,如果为空就wait,取完之后调用notifyAll,通知可能的生产者。

我们看到,put和take都调用了wait,但它们的目的是不同的,或者说,它们等待的条件是不一样的,put等待的是队列不为满,而take等待的是队列不为空,但它们都会加入相同的条件等待队列。由于条件不同但又使用相同的等待队列,所以要调用notifyAll而不能调用notify,因为notify只能唤醒一个线程,如果唤醒的是同类线程就起不到协调的作用。

只能有一个条件等待队列,这是Java wait/notify机制的局限性,这使得对于等待条件的分析变得复杂,后续章节我们会介绍显式的锁和条件,它可以解决该问题。

一个简单的生产者代码如下所示:

static class Producer extends Thread {
MyBlockingQueue<String> queue;
public Producer(MyBlockingQueue<String> queue) {
this.queue = queue;
}
@Override
public void run() {
int num = 0;
try {
while (true) {
String task = String.valueOf(num);
queue.put(task);
System.out.println("produce task " + task);
num++;
Thread.sleep((int) (Math.random() * 100));
}
} catch (InterruptedException e) {
}
}
}

Producer向共享队列中插入模拟的任务数据。一个简单的示例消费者代码如下所示:

static class Consumer extends Thread {
MyBlockingQueue<String> queue;
public Consumer(MyBlockingQueue<String> queue) {
this.queue = queue;
}
@Override
public void run() {
try {
while (true) {
String task = queue.take();
System.out.println("handle task " + task);
Thread.sleep((int)(Math.random()*100));
}
} catch (InterruptedException e) {
}
}
}

主程序的示例代码如下所示:

public static void main(String[] args) {
MyBlockingQueue<String> queue = new MyBlockingQueue<>(10);
new Producer(queue).start();
new Consumer(queue).start();
}

运行该程序,会看到生产者和消费者线程的输出交替出现。

我们实现的MyBlockingQueue主要用于演示,Java提供了专门的阻塞队列实现,包括:

  • 接口BlockingQueue和BlockingDeque
  • 基于数组的实现类ArrayBlockingQueue
  • 基于链表的实现类LinkedBlockingQueue和LinkedBlockingDeque
  • 基于堆的实现类PriorityBlockingQueue

我们会在后续章节介绍这些类,在实际系统中,应该考虑使用这些类。

小结

本节介绍了Java中线程间协作的基本机制wait/notify,协作关键要想清楚协作的共享变量和条件是什么,为进一步理解,本节针对生产者/消费者模式演示了wait/notify的用法。

下一节,我们来继续探讨其他协作模式。

(与其他章节一样,本节所有代码位于 https://github.com/swiftma/program-logic)

----------------

未完待续,查看最新文章,敬请关注微信公众号“老马说编程”(扫描下方二维码),从入门到高级,深入浅出,老马和你一起探索Java编程及计算机技术的本质。用心原创,保留所有版权。

这篇关于计算机程序的思维逻辑 (67)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/795152

相关文章

逻辑表达式,最小项

目录 得到此图的逻辑电路 1.画出它的真值表 2.根据真值表写出逻辑式 3.画逻辑图 逻辑函数的表示 逻辑表达式 最小项 定义 基本性质 最小项编号 最小项表达式   得到此图的逻辑电路 1.画出它的真值表 这是同或的逻辑式。 2.根据真值表写出逻辑式   3.画逻辑图   有两种画法,1是根据运算优先级非>与>或得到,第二种是采

UMI复现代码运行逻辑全流程(一)——eval_real.py(尚在更新)

一、文件夹功能解析 全文件夹如下 其中,核心文件作用为: diffusion_policy:扩散策略核心文件夹,包含了众多模型及基础库 example:标定及配置文件 scripts/scripts_real:测试脚本文件,区别在于前者倾向于单体运行,后者为整体运行 scripts_slam_pipeline:orb_slam3运行全部文件 umi:核心交互文件夹,作用在于构建真

1 模拟——67. 二进制求和

1 模拟 67. 二进制求和 给你两个二进制字符串 a 和 b ,以二进制字符串的形式返回它们的和。 示例 1:输入:a = "11", b = "1"输出:"100"示例 2:输入:a = "1010", b = "1011"输出:"10101" 算法设计 可以从低位到高位(从后向前)计算,用一个变量carry记录进位,如果有字符没处理完或者有进位,则循环处理。两个字符串对

颠覆你的开发模式:敏捷思维带来的无限可能

敏捷软件开发作为现代软件工程的重要方法论,强调快速响应变化和持续交付价值。通过灵活的开发模式和高效的团队协作,敏捷方法在应对动态变化和不确定性方面表现出色。本文将结合学习和分析,探讨系统变化对敏捷开发的影响、业务与技术的对齐以及敏捷方法如何在产品开发过程中处理持续变化和迭代。 系统变化对敏捷软件开发的影响 在敏捷软件开发中,系统变化的管理至关重要。系统变化可以是需求的改变、技术的升级、

0906作业+思维导图梳理

一、作业: 1、创捷一个类似于qq登录的界面 1)源代码 #include "widget.h"#include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget){ui->setupUi(this);//QPushbutton:登录、退出this->join = new QP

【Java编程的逻辑】原子变量 CAS 显示锁

原子变量 在理解synchronized中有使用synchronized保证原子更新操作,但是使用synchronized成本太高了,需要先获取锁,最后还要释放锁,如果获取不到锁还需要等到。这些成本都是比较高的,对于这种情况,可以使用原子变量。 Java并发包中的基本原子变量类型有以下几种: AtomicBoolean:原子Boolean类型,常用来在程序中表示一个标志位 AtomicIn

【Java编程的逻辑】容器类的总结

抽象容器类 用法和特点 容器类有两个根接口,分别是Collection 和 Map ,Collection表示单个元素的集合,Map表示键值对的集合 。 Collection Collection表示的数据集合有基本的增、删、查、遍历等方法,但没有定义元素间的顺序或位置,也没有规定是否有重复元素。 List: 是Collection的子接口,表示有顺序或位置的数据集合,增加了根据

【Java编程的逻辑】堆与优先级队列PriorityQueue

完全二叉树 & 满二叉树 & 堆 基本概念 满二叉树是指除了最后一层外,每个节点都有两个孩子,而最后一层都是叶子节点,都没有孩子。 满二叉树一定是完全二叉树,但完全二叉树不要求最后一层是满的,但如果不满,则要求所有节点必须集中在最左边,从左到右是连续的,中间不能有空的。 特点 在完全二叉树中,可以给每个节点一个编号,编号从1开始连续递增,从上到下,从左到右 完全二叉树有一

【Java编程的逻辑】Map和Set

HashMap Map有键和值的概念。一个键映射到一个值,Map按照键存储和访问值,键不能重复。 HashMap实现了Map接口。 基本原理 HashMap的基本实现原理:内部有一个哈希表,即数组table,每个元素table[i]指向一个单向链表,根据键存取值,用键算出hash值,取模得到数组中的索引位置index,然后操作table[index]指向的单向链表。 存取的时候依据键的

[机缘参悟-222] - 系统的重构源于被动的痛苦、源于主动的精进、源于进化与演进(软件系统、思维方式、亲密关系、企业系统、商业价值链、中国社会、全球)

目录 前言:系统的重构源于被动的痛苦、源于主动的精进、源于进化与演进 一、软件系统的重构 1、重构的定义与目的 2、重构的时机与方法 3、重构的注意事项 4、重构的案例分析 二、大脑思维的重构 1、大脑思维重构的定义 2、大脑思维重构的方法 3、大脑思维重构的挑战与前景 三、认知的重构 1、定义 2、目的 3、方法 四、实例 五、总结 四、婚姻家庭的重构 1、婚