红黑树的删除真的很难吗?其实是你没找到好的解题思路,不信你点击进来看看...

本文主要是介绍红黑树的删除真的很难吗?其实是你没找到好的解题思路,不信你点击进来看看...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

红黑树删除节点

  红黑树的节点的删除其实也分为两步:

  1. 先删除节点(这步和普通的二叉树删除是一样的)

  2. 然后再调整

1.删除节点

  要删除这个节点先需要找到这个节点,找到节点就是普通的二分查找,具体代码如下

    private RBNode getNode(K key){RBNode node = this.root;while (node != null ){int cmp = key.compareTo((K) node.key);if(cmp < 0){// 在左子树node = node.left;}else if(cmp >0){// 右子树node = node.right;}else{return node;}}return null;}

  在整理红黑树节点的删除操作时我们需要先理解清楚红黑树删除和2-3-4树删除的等价关系,这样理解起来才会比较容易
  核心理论:红黑树删除操作的本质其实就是删除2-3-4树的叶子节点

在这里插入图片描述

情况一
在这里插入图片描述

情况2:删除的是非情况1的节点,根据我们前面介绍的删除的规则,会找到对应的前驱和后继节点,那么最终删除的还是叶子节点

在这里插入图片描述

首先删除节点的代码为:

/*** 删除节点* @param key* @return*/public V remove(K key){// 先找到这个节点RBNode node = getNode(key);if(node == null){return null;}// 把值存起来 删除后 返回V oldValue = (V) node.value;deleteNode(node);return oldValue;}/*** 删除节点*   3种情况* 1.删除叶子节点,直接删除* 2.删除的节点有一个子节点,那么用子节点来替代* 3.如果删除的节点右两个子节点,此时需要找到前驱节点或者后继节点来替代*    可以转换为 1、2的情况* @param node*/private void deleteNode(RBNode node){// 3.node节点有两个子节点if(node.left !=null && node.right != null){// 找到要删除节点的后继节点RBNode successor = successor(node);// 然后用后继节点的信息覆盖掉 要删除节点的信息node.key = successor.key;node.value = successor.value;// 然后我们要删除的节点就变为了 后继节点node = successor;}// 2.删除有一个子节点的情况RBNode replacement = node.left != null ? node.left : node.right;if(replacement != null){// 替代者的父指针指向原来 node 的父节点replacement.parent = node.parent;if(node.parent == null){// 说明 node 是root节点root = replacement;}else if(node == node.parent.left){// 双向绑定node.parent.left = replacement;}else{node.parent.right = replacement;}// 将node的左右孩子指针和父指针都指向null node等待GCnode.left = node.right = node.parent = null;// 替换完成后需要调整平衡if(node.color == BLACK){// fixAfterRemove(replacement)}}else if(node.parent == null){// 说明要删除的是root节点root = null;}else{// 1. node节点是叶子节点 replacement为null// 先调整if(node.color == BLACK){// fixAfterRemove(node)}// 再删除if(node.parent != null){if(node == node.parent.left){node.parent.left = null;}else{node.parent.right = null;}node = null;}}}

然后就是需要调整红黑树的平衡了。

2.删除后的平衡调整

删除节点的调整操作:

1.情况一:自己能搞定的,对应叶子节点是3节点和4节点

在这里插入图片描述

2.情况二:自己搞不定,需要兄弟借,但是兄弟不借,找父亲借,父亲下来,然后兄弟找一个人去代替父亲当家

这种情况就是兄弟节点是3节点或者4节点

找兄弟节点

在这里插入图片描述

如果找到的兄弟节点是红色其实还要调整
在这里插入图片描述

执行如下调整先,先变色,然后左旋

在这里插入图片描述

在这里插入图片描述

找兄弟节点借

在这里插入图片描述

然后沿着7节点左旋
在这里插入图片描述

3.情况三:跟兄弟借,兄弟也没有(情同手足,同时自损)

兄弟节点是2节点,同时当前节点的父节点是红色节点的情况

在这里插入图片描述

删除后直接变色就可以了

兄弟节点是2节点,同时当前节点的父节点是黑色节点

在这里插入图片描述

变更操作为如下,如果继续有父节点那么还要递归处理
在这里插入图片描述

分析清楚了删除的3中情况,我们就可以撸处删除的调整的代码了

    /*** 2-3-4树删除操作:* 1.情况一:自己能搞定的,对应叶子节点是3节点和4节点* 2.情况二:自己搞不定,需要兄弟借,但是兄弟不借,找父亲借,父亲下来,然后兄弟找一个人去代替父亲当家* 3.情况三:跟兄弟借,兄弟也没有* @param x*/private void fixAfterRemove(RBNode x){// 情况2、3while(x != root && colorOf(x) == BLACK){// 这种情况才需要调整// x 是左孩子的情况if(x == leftOf(parentOf(x))){// 找兄弟节点RBNode rNode = rightOf(parentOf(x));// 判断此时的兄弟节点是否是真正的兄弟节点 兄弟是红色的情况要调整if(colorOf(rNode) == RED){ // 2-3-4树的 3节点 交换颜色,然后左旋一次就可以了setColor(rNode,BLACK);setColor(parentOf(x),RED);leftRotate(parentOf(x)); // 左旋一次rNode = rightOf(parentOf(x)); // 找到真正的兄弟节点}// 情况3 找兄弟借 没得借if(colorOf(leftOf(rNode)) == BLACK && colorOf(rightOf(rNode)) == BLACK){// 情况复杂setColor(rNode,RED);x=parentOf(x); // 向上递归}else{// 情况2 找兄弟借 有借// 兄弟节点是 3节点或者4节点if(colorOf(rightOf(rNode)) == BLACK){// 右孩子为空,则左孩子肯定不为空// 兄弟节点 先要左一次右旋setColor(rNode,RED);setColor(leftOf(rNode),BLACK);rightRotate(rNode);// 重新调整叔叔节点的位置rNode = rightOf(parentOf(x));}// 变色  兄弟节点是 3节点还是4节点 都旋转一次setColor(rNode, colorOf(parentOf(x)));setColor(parentOf(x),BLACK);setColor(rightOf(rNode),BLACK);// 左旋leftRotate(parentOf(x));x = root; // 结束循环  递归 针对的是 情况3}}else{// 找兄弟节点RBNode rNode = leftOf(parentOf(x));// 判断此时的兄弟节点是否是真正的兄弟节点 兄弟是红色的情况要调整if(colorOf(rNode) == RED){ // 2-3-4树的 3节点 交换颜色,然后左旋一次就可以了setColor(rNode,BLACK);setColor(parentOf(x),RED);rightRotate(parentOf(x)); // 左旋一次rNode = leftOf(parentOf(x)); // 找到真正的兄弟节点}// 情况3 找兄弟借 没得借if(colorOf(rightOf(rNode)) == BLACK && colorOf(leftOf(rNode)) == BLACK){// 情况复杂setColor(rNode,RED);x=parentOf(x); // 向上递归}else{// 情况2 找兄弟借 有借// 兄弟节点是 3节点或者4节点if(colorOf(leftOf(rNode)) == BLACK){// 右孩子为空,则左孩子肯定不为空// 兄弟节点 先要左一次右旋setColor(rNode,RED);setColor(leftOf(rNode),BLACK);leftRotate(rNode);// 重新调整叔叔节点的位置rNode = leftOf(parentOf(x));}// 变色  兄弟节点是 3节点还是4节点 都旋转一次setColor(rNode, colorOf(parentOf(x)));setColor(parentOf(x),BLACK);setColor(leftOf(rNode),BLACK);// 左旋rightRotate(parentOf(x));x = root; // 结束循环  递归 针对的是 情况3}}}// 情况1:替代节点是红色,直接染黑  在情况3的情况下  补偿删除的黑色节点,这样红黑树依然保存平衡setColor(x,BLACK);}

~好了,到这儿,相信大家应该对红黑树的各种操作都比较清楚了,如果对你有帮助,欢迎点赞关注加收藏哦!!!V_V

这篇关于红黑树的删除真的很难吗?其实是你没找到好的解题思路,不信你点击进来看看...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/794248

相关文章

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

SpringBoot项目删除Bean或者不加载Bean的问题解决

《SpringBoot项目删除Bean或者不加载Bean的问题解决》文章介绍了在SpringBoot项目中如何使用@ComponentScan注解和自定义过滤器实现不加载某些Bean的方法,本文通过实... 使用@ComponentScan注解中的@ComponentScan.Filter标记不加载。@C

MySQL中删除重复数据SQL的三种写法

《MySQL中删除重复数据SQL的三种写法》:本文主要介绍MySQL中删除重复数据SQL的三种写法,文中通过代码示例讲解的非常详细,对大家的学习或工作有一定的帮助,需要的朋友可以参考下... 目录方法一:使用 left join + 子查询删除重复数据(推荐)方法二:创建临时表(需分多步执行,逻辑清晰,但会

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

Python按条件批量删除TXT文件行工具

《Python按条件批量删除TXT文件行工具》这篇文章主要为大家详细介绍了Python如何实现按条件批量删除TXT文件中行的工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.简介2.运行效果3.相关源码1.简介一个由python编写android的可根据TXT文件按条件批

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

【测试】输入正确用户名和密码,点击登录没有响应的可能性原因

目录 一、前端问题 1. 界面交互问题 2. 输入数据校验问题 二、网络问题 1. 网络连接中断 2. 代理设置问题 三、后端问题 1. 服务器故障 2. 数据库问题 3. 权限问题: 四、其他问题 1. 缓存问题 2. 第三方服务问题 3. 配置问题 一、前端问题 1. 界面交互问题 登录按钮的点击事件未正确绑定,导致点击后无法触发登录操作。 页面可能存在

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验