最短路径问题(dj和floyd算法)

2024-03-10 10:18

本文主要是介绍最短路径问题(dj和floyd算法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 首先是dj算法,dj算法的思想是从开始结点开始,每次找到距离开始结点距离最近的结点newP,加入到集合K中,表示已经访问过,然后遍历newP的直接相邻的结点,如果从newP结点开始到直接相邻的结点 i 的距离Dis[newP]+c < Dis[i],那么就更新Dis[i],扫描完成所有newP的邻接结点,然后遍历所有的结点,找到未访问过的并且Dis[i]最小的结点 j ,设为新的 newP ,重复上述步骤,直到所有的结点都完成了访问。

设置一个Dis[i]矩阵,表示从1到该结点的距离,Dis[1] = 0, 开始时其它结点的Dis[1] = -1.从1开始进行循环。

如果要打印最短路径,可以设置一个vector<int> pre[N], 每个结点 i ,将在更新Dis[i]时,更新 pre[i].push_back(newP), 通过newP到达 i 是当前从1到达i 的最短路径的上一个结点,这样从后向前打印即可。

看下面的这个例子:

从1出发,找到最短的邻接点 3,访问;从 3 开始遍历 3 的邻接点, 更新5的Dis[5] = 7, 从未访问的结点2,4,5中找到最近的结点2,访问,然后是4访问,遍历4的邻接点,Dis[5]更新为6,最后访问5;完成;

问题是:给出N个地点,M个直接路径,直接路径包括两端地点和它们直接长度,找出1到N号地点的最短路径:

代码为:

#include<cstdio>
#include<vector>
#include<math.h>
#include<algorithm>
using namespace std;
#define N 101
struct E{int next;int c;
};
vector<E> edge[N];//edge[i]中的与元素是一个个的E类型,包含了直接相连号和边权
bool mark[N];//表示该结点是否已经加入到最短路径已知集合中
int Dis[N];//从开始结点到任意结点的最短路径长度度int main()
{int n,m;//n个地点,m个直接相连路径,求从1到n的最短路径while(scanf("%d%d", &n, &m) != EOF){if(n == 0 && m == 0)break;for(int i = 1; i <= n; i++)edge[i].clear();while(m--){int a,b,cost;scanf("%d%d%d", &a, &b, &cost);E temp;temp.next = b;temp.c = cost;edge[a].push_back(temp);temp.next = a;edge[b].push_back(temp);//无向边,所以两个点的邻接链表都要增加}for(int i = 1; i <= n; i++){Dis[i] = -1;mark[i] = false;}Dis[1] = 0;mark[1] = true;int newP = 1;//表示是上一个加入到最短路径的点for(int i = 1; i < n; i++)//循环n-1次,将所有的点都加入到集合中{for(int j = 0; j < edge[newP].size(); j++){int t = edge[newP][j].next;int ct = edge[newP][j].c;if(mark[t] == true)continue;if(Dis[t] == -1 || Dis[t] > Dis[newP] + ct)Dis[t] = Dis[newP] + ct;}int min = 100000000;for(int k = 1; k <= n; k++){if(mark[k] == true)continue;if(Dis[k] == -1)continue;if(min > Dis[k]){min = Dis[k];newP = k;}}mark[newP] = true;}printf("%d\n", Dis[n]);}return 0;
}

运行结果,最后一个例子是上面的图:

2. floyd算法求最短路径,这种算法要求事先得到所有直接相连结点间的距离,然后依次判断i,j之间是否存在一个中间结点,使得

ans[i][j] > ans[i][k] + ans[k][j]从而得到新的ans[i][j]的值,要对这个中间结点进行所有结点的遍历,不可达的要跳过,对所有ans[i][j]进行遍历n次,就可以得到所有结点间的最短距离,包括i, j之间包含多个中间结点的情况,不用深入研究,记住即可。注意设定ans[i][i] = 0,所以 ans[i][j] == ans[i][i] + ans[i][j],不会进行更新。

代码为:

#include<cstdio>
#include<iostream>
using namespace std;int ans[101][101]; //初始值为邻接矩阵,只有直接相邻的结点的距离才有意义,否则为-1
int main()
{int n, m;while(scanf("%d%d", &n, &m) != EOF){if(n == 0 && m == 0)break;for(int i = 1; i <= n; i++){for(int j = 1; j <= n; j++){ans[i][j] = -1;}ans[i][i] = 0; //自己到自己的路径长度设为0}while(m--){int a, b, c;scanf("%d%d%d", &a, &b, &c);ans[a][b] = ans[b][a] = c;//无向图}for(int k = 1; k <= n; k++)for(int i = 1; i <= n; i++)for(int j = 1; j <= n; j++){if(ans[i][k] == -1 || ans[k][j] == -1)continue;if(ans[i][j] == -1 || ans[i][k] + ans[k][j] < ans[i][j])ans[i][j] = ans[i][k] + ans[k][j];}printf("%d\n", ans[1][n]);}return 0;
}

运行结果为:

这篇关于最短路径问题(dj和floyd算法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/793917

相关文章

修改若依框架Token的过期时间问题

《修改若依框架Token的过期时间问题》本文介绍了如何修改若依框架中Token的过期时间,通过修改`application.yml`文件中的配置来实现,默认单位为分钟,希望此经验对大家有所帮助,也欢迎... 目录修改若依框架Token的过期时间修改Token的过期时间关闭Token的过期时js间总结修改若依

MySQL的cpu使用率100%的问题排查流程

《MySQL的cpu使用率100%的问题排查流程》线上mysql服务器经常性出现cpu使用率100%的告警,因此本文整理一下排查该问题的常规流程,文中通过代码示例讲解的非常详细,对大家的学习或工作有一... 目录1. 确认CPU占用来源2. 实时分析mysql活动3. 分析慢查询与执行计划4. 检查索引与表

MySQL报错sql_mode=only_full_group_by的问题解决

《MySQL报错sql_mode=only_full_group_by的问题解决》本文主要介绍了MySQL报错sql_mode=only_full_group_by的问题解决,文中通过示例代码介绍的非... 目录报错信息DataGrip 报错还原Navicat 报错还原报错原因解决方案查看当前 sql mo

Spring Boot 整合 ShedLock 处理定时任务重复执行的问题小结

《SpringBoot整合ShedLock处理定时任务重复执行的问题小结》ShedLock是解决分布式系统中定时任务重复执行问题的Java库,通过在数据库中加锁,确保只有一个节点在指定时间执行... 目录前言什么是 ShedLock?ShedLock 的工作原理:定时任务重复执行China编程的问题使用 Shed

MYSQL事务死锁问题排查及解决方案

《MYSQL事务死锁问题排查及解决方案》:本文主要介绍Java服务报错日志的情况,并通过一系列排查和优化措施,最终发现并解决了服务假死的问题,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录问题现象推测 1 - 客户端无错误重试配置推测 2 - 客户端超时时间过短推测 3 - mysql 版本问

Git提交代码详细流程及问题总结

《Git提交代码详细流程及问题总结》:本文主要介绍Git的三大分区,分别是工作区、暂存区和版本库,并详细描述了提交、推送、拉取代码和合并分支的流程,文中通过代码介绍的非常详解,需要的朋友可以参考下... 目录1.git 三大分区2.Git提交、推送、拉取代码、合并分支详细流程3.问题总结4.git push

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Vue项目中Element UI组件未注册的问题原因及解决方法

《Vue项目中ElementUI组件未注册的问题原因及解决方法》在Vue项目中使用ElementUI组件库时,开发者可能会遇到一些常见问题,例如组件未正确注册导致的警告或错误,本文将详细探讨这些问题... 目录引言一、问题背景1.1 错误信息分析1.2 问题原因二、解决方法2.1 全局引入 Element

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@