本文主要是介绍bgslibrary视频前景提取算法之帧差法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
BGSLibrary:A Background Subtraction Library
The BGSLibrary was developed by Andrews Sobral and provides an easy-to-use C++ framework based on OpenCV to perform background subtraction (BGS) in videos.
github介绍及下载地址 : https://github.com/andrewssobral/bgslibrary
现有30+种视频前景提取算法,不一定最优,但可以比较效果,准备研究其中部分。
第一次写,给出完整的头文件和main函数,以后仅给出要实现的算法
这次先实现 帧差法 (FrameDifferenceBGS) FrameDifference,总共4个文件
IBGS.h //IBGS是所有不同的视频前景提取算法的抽象类 ,我去掉其中saveConfig()和loadConfig()
FrameDifferenceBGS.h 帧差法
FrameDifferenceBGS.cpp
main.cpp //自己写的调用
文件名: IBGS.h
/*
This file is part of BGSLibrary.BGSLibrary is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.BGSLibrary is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.You should have received a copy of the GNU General Public License
along with BGSLibrary. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once#include <opencv2/opencv.hpp>
#include <opencv2/imgproc/imgproc_c.h>
#include <opencv2/imgproc/types_c.h>
#include <opencv2/highgui/highgui_c.h>class IBGS
{
public:virtual void process(const cv::Mat &img_input, cv::Mat &img_foreground, cv::Mat &img_background) = 0;/*virtual void process(const cv::Mat &img_input, cv::Mat &img_foreground){process(img_input, img_foreground, cv::Mat());}*/virtual ~IBGS(){}private:/*virtual void saveConfig() = 0;virtual void loadConfig() = 0;*/
};
参考demo后自己写的main函数
main.cpp
#include <iostream>
#include "FrameDifferenceBGS.h"
#include "IBGS.h"
using namespace cv;
using namespace std;#define resizedHeight 480
#define resizedWidth 600
#define VIDEOFILE "1.mp4"
#define frameTostart 20 //设置开始帧string inputPath = "E:\\2paperCode\\testVideo\\Crossroad\\229\\";
int main(int argc, char* argv[])
{VideoCapture capture(inputPath + VIDEOFILE);if (!capture.isOpened()){cerr << "No video input\n" << endl;return -1;} IBGS *bgsFDiff;bgsFDiff = new FrameDifferenceBGS();//使用帧差法int pause = 0;Mat img_input;Mat img_input_resized(resizedHeight, resizedWidth, CV_8UC3);capture.set(CAP_PROP_POS_FRAMES, frameTostart); FrameDifferenceBGS fdiff;while (!pause){capture >> img_input;if (img_input.empty())break;resize(img_input, img_input_resized, img_input_resized.size());namedWindow("input", WINDOW_NORMAL);imshow("input", img_input_resized);Mat img_mask;Mat img_bkgmodel;bgsFDiff->process(img_input, img_mask, img_bkgmodel); // by default, it shows automatically the foreground mask imageif (cvWaitKey(10) == 'q')pause = !pause;}delete bgsFDiff;cvDestroyAllWindows();capture.release();return 0;
}
帧差法头文件,从 IBGS继承而来
FrameDifferenceBGS.h
#pragma once#include <iostream>
#include <opencv2/opencv.hpp>#include "IBGS.h"class FrameDifferenceBGS : public IBGS
{
private:bool firstTime;cv::Mat img_input_prev;cv::Mat img_foreground;bool enableThreshold;int threshold;bool showOutput;public:FrameDifferenceBGS();~FrameDifferenceBGS();void process(const cv::Mat &img_input, cv::Mat &img_output, cv::Mat &img_bgmodel);//private:
// void saveConfig();
// void loadConfig();
};
FrameDifferenceBGS.cpp
#include "FrameDifferenceBGS.h"FrameDifferenceBGS::FrameDifferenceBGS() : firstTime(true), enableThreshold(true), threshold(15), showOutput(true)
{std::cout << "FrameDifferenceBGS()" << std::endl;
}FrameDifferenceBGS::~FrameDifferenceBGS()
{std::cout << "~FrameDifferenceBGS()" << std::endl;
}void FrameDifferenceBGS::process(const cv::Mat &img_input, cv::Mat &img_output, cv::Mat &img_bgmodel)
{if (img_input.empty())return;enableThreshold = true;threshold = 15;showOutput = true;if (img_input_prev.empty()){img_input.copyTo(img_input_prev);//前一帧为空时,将当前帧复制给前一帧return;}cv::absdiff(img_input_prev, img_input, img_foreground);if (img_foreground.channels() == 3)cv::cvtColor(img_foreground, img_foreground, CV_BGR2GRAY);if (enableThreshold)cv::threshold(img_foreground, img_foreground, threshold, 255, cv::THRESH_BINARY);if (showOutput){namedWindow("Frame Difference", cv::WINDOW_NORMAL);cv::imshow("Frame Difference", img_foreground);}img_foreground.copyTo(img_output);img_input.copyTo(img_input_prev);firstTime = false;
}
PS:尽量使用 OpenCV 内置函数. 调用LUT 函数可以获得最快的速度. 这是因为OpenCV库可以通过英特尔线程架构启用多线程,下面的opencv矩阵操作均是优化的多线程并行处理,较高效
具体参考:快速对图像的像素进行操作 opencv 实战
这篇关于bgslibrary视频前景提取算法之帧差法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!