【分库分表】基于mysql+shardingSphere的分库分表技术

2024-03-10 00:20

本文主要是介绍【分库分表】基于mysql+shardingSphere的分库分表技术,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.什么是分库分表

2.分片方法

3.测试数据

4.shardingSphere

4.1.介绍

4.2.sharding jdbc

4.3.sharding proxy

4.4.两者之间的对比

5.留个尾巴


1.什么是分库分表

分库分表是一种场景解决方案,它的出现是为了解决一些场景问题的,哪些场景喃?

  • 单表过大的话,读请求进来,查数据需要的时间会过长

  • 读请求过多,单节点IO压力太大,IO压力太大会造成什么?可能会造成IO阻塞,造成响应速度变慢。

分库分表是指的两种维度,一种维度是分库,另一种维度是分表。分的话有两种分法,一种是水平分,另一种是垂直分。

水平分是指将数据分为多段,一个服务器节点上存放一段,读写的时候走自己要的那一段所在服务器上。一段也叫一个分片(sharding)

垂直分是指将一个库或者一个表从一个整体拆成多个部分,不同服务器上存储一部分:

2.分片方法

其实总的来说分库都还好,垂直分库对应着服务拆成微服务做到资源隔离各玩儿各的,问题都还不大,而且一般不会出现水平分库,因为库里面数据多的也就某一些表,我们面对更多的是水平分表。水平分表首先要面对的就是如何分片?

分片方法有如下几种:

  • hash分片法

  • range分片法

hash分片法:

主键对服务器数量取余。

这种方式在扩容后数据需要重新散列一遍,重新散列一遍花时间吗?当然花时间,但是不散列又不行,为什么喃?举个例,原来id=12的数据散列到了0表,扩容后不迁移的话按照规则id=12的表会散列到4表,这就会导致id=12这条数据在查找的时候找不到:

当然hash算法可以用一致性hash算法来优化,但其数据迁移肯定是无法规避的,且一致性hash算法本身也存在无法规避的缺点。博主之前有一篇一致性hash算法的文章,可移步:

一致性hash算法_一直hash算法-CSDN博客

range分片法:

按照编号顺序均匀的分片,好处是扩容不用散列,但是新数据往往是使用频率更高的数据,会导致压力不均匀,而且现在一般唯一ID为了安全性都是无序的,比如采用UUID做主键的时候,所以range分片法的场景适用也很有限。

3.测试数据

用一张订单表来做测试数据,根据主键来分库分表:

create table order_(
id varchar(100) primary key,
productName VARCHAR(100),
productId VARCHAR(100),
createTime datetime,
statue INT
)ENGINE=INNODB;

准备了两个库,db01和db02都有这张订单表:

依赖版本:

千万注意版本的对齐!

<dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-actuator</artifactId></dependency><!--prometheus --><dependency><groupId>io.micrometer</groupId><artifactId>micrometer-registry-prometheus</artifactId></dependency>
​<!-- MySQL驱动 --><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>8.0.29</version></dependency><!-- MyBatis Plus Starter --><dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.5.1</version></dependency><!--sharding-jdbc--><dependency><groupId>org.apache.shardingsphere</groupId><artifactId>sharding-jdbc-spring-boot-starter</artifactId><version>4.1.1</version></dependency><!-- Alibaba Druid 数据源 --><dependency><groupId>com.alibaba</groupId><artifactId>druid</artifactId><version>1.2.8</version></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><version>1.18.24</version></dependency></dependencies><dependencyManagement><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-dependencies</artifactId><version>2.6.3</version><type>pom</type><scope>import</scope></dependency></dependencies></dependencyManagement>

4.shardingSphere

4.1.介绍

分片方法说起来容易,要自己去实现一个全过程的分片分表还是很繁琐的,需要手动实现多数据源,然后实现散列算法来控制读写请求映射到哪一台服务器,升级一点的功能还包括要与服务器进行心跳通信,获取服务器的信息等等。所以说还是直接用"轮子"吧。

Apache ShardingSphere 是一个开源的分布式数据库中间件解决方案,它由阿里巴巴集团开源,目前是 Apache 软件基金会旗下的顶级项目。ShardingSphere 通过提供一组与数据库交互的标准化接口(如JDBC驱动或代理服务),对上层应用隐藏了复杂的分布式数据库处理逻辑,为开发者提供了易用且功能强大的分库分表、读写分离、数据治理、弹性伸缩等功能。

ShardingSphere分为三部分:Sharding-JDBC、Sharding-Proxy、Sharding-Sidecar。

4.2.sharding jdbc

其中Sharding-JDBC,其会托管JDBC,然后支持实现分库分表、读写分离。分库分表和读写分离都是通过配置实现的,配置好数据源,然后配置好分库规则即可。当然读写分离的前提是数据库已经配置成了读写分离的模式。以下是配置示例:

spring:application:name: testDemoshardingsphere:datasource:names: ds0,ds1ds0:driver-class-name: com.mysql.cj.jdbc.Drivertype: com.alibaba.druid.pool.DruidDataSourceurl: jdbc:mysql://localhost:3306/db01?serverTimezone=UTCusername: rootpassword: adminds1:driver-class-name: com.mysql.cj.jdbc.Drivertype: com.alibaba.druid.pool.DruidDataSourceurl: jdbc:mysql://localhost:3306/db02?serverTimezone=UTCusername: rootpassword: adminsharding:default-database-strategy:inline:sharding-column: order_idalgorithm-expression: ds$->{order_id % 2}tables:t_order:actual-data-nodes: ds$->{0..1}.t_order_$->{0..1}table-strategy:inline:sharding-column: order_idalgorithm-expression: t_order_$->{order_id % 2}#读写分离master-slave-rules:ms_ds:master-data-source-name: ds0slave-data-source-names: ds1load-balance-algorithm-type: ROUND_ROBIN #负载均衡算法props:sql.show: true #是否打印sql

上述YAML配置已经使用了inline表达式实现了基于order_id字段的分库和分表规则。当然还提供了接口,对于自定义分库、分表规则,可以通过实现ShardingSphere提供的接口来自定义算法类,并在配置中引用这些类。

public class CustomDatabaseShardingAlgorithm implements PreciseShardingAlgorithm<Integer> {@Overridepublic String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Integer> shardingValue) {// 根据order_id和其他可能的业务逻辑计算数据库名称int orderId = shardingValue.getValue();return "ds" + (orderId % 2); // 这里仅作为示例,实际请根据业务需求编写}
}
spring:application:name: testDemoshardingsphere:# ... 数据源配置 ...sharding:default-database-strategy:precise:sharding-column: order_idalgorithm-class-name: com.example.CustomDatabaseShardingAlgorithmtables:t_order:actual-data-nodes: ds$->{0..1}.t_order_$->{0..1}table-strategy:precise:sharding-column: order_id# 同样可以为表级别分片指定自定义算法类algorithm-class-name: com.example.CustomTableShardingAlgorithm# ... 读写分离配置 ...props:sql.show: true

同样的,如果需要自定义分表规则,也需要创建一个实现相应接口(如PreciseShardingAlgorithm)的类,并在table-strategy部分通过algorithm-class-name属性引用它。以上示例中的CustomTableShardingAlgorithm即是一个假设存在的自定义分表策略类。请确保实际应用中已正确创建并配置此类。

4.3.sharding proxy

sharding proxy是一个中间件,也能实现分库分表和读写分离。不同于sharding jdbc需要侵入代码中对JDBC进行一个托管,sharding

proxy是无侵入式的,一个独立的组件。

sharding proxy需要先下载,然后解压、配置。

配置示例:

配置数据库的信息

然后需要导入mysql的驱动:

配置分库分表:

这里要注意了databaseName指向的数据库是一个总库,应用都会往这个库里面进行数据读写,然后由sharding proxy来向我们配置的不同数据源里进行分库分表。给出一个配置文件,大家感受一下,该配置文件基于Apache ShardingSphere 5.x版本的语法编写。不同版本可能配置项存在不同哈。

# config-sharding.yaml
​
schemaName: testDemo  # 指定逻辑库名称
​
rules:- !SHARDINGdataSources:ds0:url: jdbc:mysql://localhost:3306/db01?serverTimezone=UTCusername: rootpassword: adminconnectionTimeoutMilliseconds: 30000idleTimeoutMilliseconds: 60000maxLifetimeMilliseconds: 1800000type: com.alibaba.druid.pool.DruidDataSourceds1:url: jdbc:mysql://localhost:3306/db02?serverTimezone=UTCusername: rootpassword: admin# 其他连接池属性...
​shardingRule:tables:t_order:actualDataNodes: ds$->{0..1}.t_order_$->{0..1}databaseStrategy:inline:shardingColumn: order_idalgorithmExpression: ds$->{order_id % 2}tableStrategy:inline:shardingColumn: order_idalgorithmExpression: t_order_$->{order_id % 2}
​masterSlaveRules:ms_ds:masterDataSourceName: ds0slaveDataSourceNames: [ds1]loadBalanceAlgorithmType: ROUND_ROBIN
​
props:sql.show: true

4.4.两者之间的对比

sharding jdbc是侵入了应用,托管了JDBC,对代码有侵入性。

sharding proxy是对数据库下手,其并没用侵入数据库,也没用上数据库的bin log,而是去监听数据库的端口从而来拦截下sql。

但是proxy明显可以看到是中心化的,都在向一个点来写数据,是会有性能瓶颈的。

5.留个尾巴

不管是水平拆还是垂直拆,分库分表后一定会存在两个核心问题:

  • 不好join,需要在程序层面进行join

  • 分布式事务

sharding是如何解决第一个问题的喃?首先sharding会各个节点上进行全表扫描,用类似笛卡尔积的办法聚合成最终的结果。

至于第二个问题,留在后文,我们将深入探究一下sharding生态圈是如何实现分布式事务的。除此之外还有一些尾巴要留在后文继续展开,包括:

  • sharding jdbc是如何托管JDBC的
  • sharding proxy是否存在中心化架构带来的性能问题?有没有办法规避?

这篇关于【分库分表】基于mysql+shardingSphere的分库分表技术的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/792423

相关文章

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

Mysql DATETIME 毫秒坑的解决

《MysqlDATETIME毫秒坑的解决》本文主要介绍了MysqlDATETIME毫秒坑的解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 今天写代码突发一个诡异的 bug,代码逻辑大概如下。1. 新增退款单记录boolean save = s

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

MYSQL行列转置方式

《MYSQL行列转置方式》本文介绍了如何使用MySQL和Navicat进行列转行操作,首先,创建了一个名为`grade`的表,并插入多条数据,然后,通过修改查询SQL语句,使用`CASE`和`IF`函... 目录mysql行列转置开始列转行之前的准备下面开始步入正题总结MYSQL行列转置环境准备:mysq

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

Linux(Centos7)安装Mysql/Redis/MinIO方式

《Linux(Centos7)安装Mysql/Redis/MinIO方式》文章总结:介绍了如何安装MySQL和Redis,以及如何配置它们为开机自启,还详细讲解了如何安装MinIO,包括配置Syste... 目录安装mysql安装Redis安装MinIO总结安装Mysql安装Redis搜索Red

Mysql8.0修改配置文件my.ini的坑及解决

《Mysql8.0修改配置文件my.ini的坑及解决》使用记事本直接编辑my.ini文件保存后,可能会导致MySQL无法启动,因为MySQL会以ANSI编码读取该文件,解决方法是使用Notepad++... 目录Myhttp://www.chinasem.cnsql8.0修改配置文件my.ini的坑出现的问题