并发编程专题之Disruptor框架

2024-03-09 20:38

本文主要是介绍并发编程专题之Disruptor框架,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

并发框架Disruptor译文 | 并发编程网 – ifeve.com

1. 什么是Disruptor

Martin Fowler在自己网站上写了一篇LMAX架构的文章,在文章中他介绍了LMAX是一种新型零售金融交易平台,它能够以很低的延迟产生大量交易。这个系统是建立在JVM平台上,其核心是一个业务逻辑处理器,它能够在一个线程里每秒处理6百万订单。业务逻辑处理器完全是运行在内存中,使`用事件源驱动方式。业务逻辑处理器的核心是Disruptor。
Disruptor它是一个开源的并发框架,并获得2011 Duke’s 程序框架创新奖,能够在无锁的情况下实现网络的Queue并发操作。
Disruptor是一个高性能的异步处理框架,或者可以认为是最快的消息框架(轻量的JMS),也可以认为是一个观察者模式的实现,或者事件监听模式的实现。

在使用之前,首先说明disruptor主要功能加以说明,你可以理解为他是一种高效的**"生产者-消费者"模型。也就性能远远高于传统的BlockingQueue容器。**

在JDK的多线程与并发库一文中, 提到了BlockingQueue实现了生产者-消费者模型
BlockingQueue是基于锁实现的, 而锁的效率通常较低. 有没有使用CAS机制实现的生产者-消费者
Disruptor就是这样.
Disruptor使用观察者模式, 主动将消息发送给消费者, 而不是等消费者从队列中取; 在无锁的情况下, 实现queue(环形, RingBuffer)的并发操作, 性能远高于BlockingQueue

2. Disruptor的设计方案

Disruptor通过以下设计来解决队列速度慢的问题:

  1. 环形数组结构
    为了避免垃圾回收,采用数组而非链表。同时,数组对处理器的缓存机制更加友好。
  2. 元素位置定位
    数组长度2^n,通过位运算,加快定位的速度。下标采取递增的形式。不用担心index溢出的问题。index是long类型,即使100万QPS的处理速度,也需要30万年才能用完。
  3. 无锁设计
    每个生产者或者消费者线程,会先申请可以操作的元素在数组中的位置,申请到之后,直接在该位置写入或者读取数据。
    下面忽略数组的环形结构,介绍一下如何实现无锁设计。整个过程通过原子变量CAS,保证操作的线程安全。

3. Disruptor实现特征

另一个关键的实现低延迟的细节就是在Disruptor中利用无锁的算法,所有内存的可见性和正确性都是利用内存屏障或者CAS操作。使用CAS来保证多线程安全,与大部分并发队列使用的锁相比,CAS显然要快很多。CAS是CPU级别的指令,更加轻量,不必像锁一样需要操作系统提供支持,所以每次调用不需要在用户态与内核态之间切换,也不需要上下文切换。
只有一个用例中锁是必须的,那就是BlockingWaitStrategy(阻塞等待策略),唯一的实现方法就是使用Condition实现消费者在新事件到来前等待。许多低延迟系统使用忙等待去避免Condition的抖动,然而在系统忙等待的操作中,性能可能会显著降低,尤其是在CPU资源严重受限的情况下,例如虚拟环境下的WEB服务器。

4. Disruptor实现生产与消费

Pom Maven依赖信息

<dependencies><dependency><groupId>com.lmax</groupId><artifactId>disruptor</artifactId><version>3.2.1</version></dependency>
</dependencies>

首先声明一个Event来包含需要传递的数据:

//定义事件event  通过Disruptor 进行交换的数据类型。
public class LongEvent {private Long value;public Long getValue() {return value;}public void setValue(Long value) {this.value = value;}}

需要让Disruptor为我们创建事件,我们同时还声明了一个EventFactory来实例化Event对象。

public class LongEventFactory implements EventFactory<LongEvent> {public LongEvent newInstance() {return new LongEvent();}}

事件消费者,也就是一个事件处理器。这个事件处理器简单地把事件中存储的数据打印到终端:

public class LongEventHandler implements EventHandler<LongEvent>  {public void onEvent(LongEvent event, long sequence, boolean endOfBatch) throws Exception {System.out.println("消费者:"+event.getValue());}
}

定义生产者发送事件

public class LongEventProducer {public final RingBuffer<LongEvent> ringBuffer;public LongEventProducer(RingBuffer<LongEvent> ringBuffer) {this.ringBuffer = ringBuffer;}public void onData(ByteBuffer byteBuffer) {// 1.ringBuffer 事件队列 下一个槽long sequence = ringBuffer.next();Long data = null;try {//2.取出空的事件队列LongEvent longEvent = ringBuffer.get(sequence);data = byteBuffer.getLong(0);//3.获取事件队列传递的数据longEvent.setValue(data);try {Thread.sleep(10);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();}} finally {System.out.println("生产这准备发送数据");//4.发布事件ringBuffer.publish(sequence);}}}

main函数执行调用

public class DisruptorMain {public static void main(String[] args) {// 1.创建一个可缓存的线程 提供线程来出发Consumer 的事件处理ExecutorService executor = Executors.newCachedThreadPool();// 2.创建工厂EventFactory<LongEvent> eventFactory = new LongEventFactory();// 3.创建ringBuffer 大小int ringBufferSize = 1024 * 1024; // ringBufferSize大小一定要是2的N次方// 4.创建DisruptorDisruptor<LongEvent> disruptor = new Disruptor<LongEvent>(eventFactory, ringBufferSize, executor,ProducerType.SINGLE, new YieldingWaitStrategy());// 5.连接消费端方法disruptor.handleEventsWith(new LongEventHandler());// 6.启动disruptor.start();// 7.创建RingBuffer容器RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer();// 8.创建生产者LongEventProducer producer = new LongEventProducer(ringBuffer);// 9.指定缓冲区大小ByteBuffer byteBuffer = ByteBuffer.allocate(8);for (int i = 1; i <= 100; i++) {byteBuffer.putLong(0, i);producer.onData(byteBuffer);}//10.关闭disruptor和executordisruptor.shutdown();executor.shutdown();}}

代码流程总结:
先定义一个LongEvent,在次可以理解成生产者和消费者之间需要传递的数据,接下来定义LongEventFactory ,是一个用来实例化LongEvent对象的工厂。接着定义LongEventHandler ,可以看成是事件的消费者,它用来处理接收到的LongEvent,并把数据打印在终端。
创建主方法,在代码中创建线程池,工厂,RingBuffer(大小只能是2的n次方),最终完成Disruptor的创建,然后用创建好的disruptor注册消费者,用来推送事件,最后再启动disruptor;至此主要完成了生产端代码的编写,下面是消费端的编写。
定义生产者LongEventHandler 用来发送事件,其中数据从事件队列中进行获取。
接着在主方法中创建生产者,制定好缓冲区的大小,并创建100个事件,最后关闭disruptor和executor。

执行结果
在这里插入图片描述
要注意如果添加两个消费者的话,会重复接受到数据,而不是均摊,如果要两个消费者均摊数据还需要进行分组操作

5. 什么是ringbuffer

它是一个环(首尾相接的环),你可以把它用做在不同上下文(线程)间传递数据的buffer。
在这里插入图片描述
基本来说,ringbuffer拥有一个序号,这个序号指向数组中下一个可用的元素。(校对注:如下图右边的图片表示序号,这个序号指向数组的索引4的位置。)
随着你不停地填充这个buffer(可能也会有相应的读取),这个序号会一直增长,直到绕过这个环。
在这里插入图片描述
要找到数组中当前序号指向的元素,可以通过mod操作(即通过取模运算进行查找):以上面的ringbuffer为例(java的mod语法):12 % 10 = 2。很简单吧。 事实上,上图中的ringbuffer只有10个槽完全是个意外。如果槽的个数是2的N次方更有利于基于二进制

5.1 优点:

之所以ringbuffer采用这种数据结构,是因为它在可靠消息传递方面有很好的性能。这就够了,不过它还有一些其他的优点。
首先,因为它是数组,所以要比链表快,而且有一个容易预测的访问模式。(译者注:数组内元素的内存地址的连续性存储的)。这是对CPU缓存友好的—也就是说,在硬件级别,数组中的元素是会被预加载的,因此在ringbuffer当中,cpu无需时不时去主存加载数组中的下一个元素。(校对注:因为只要一个元素被加载到缓存行,其他相邻的几个元素也会被加载进同一个缓存行)

其次,你可以为数组预先分配内存,使得数组对象一直存在(除非程序终止)。这就意味着不需要花大量的时间用于垃圾回收。此外,不像链表那样,需要为每一个添加到其上面的对象创造节点对象—对应的,当删除节点时,需要执行相应的内存清理操作。

5.2 RingBuffer底层实现

RingBuffer是一个首尾相连的环形数组,所谓首尾相连,是指当RingBuffer上的指针越过数组是上界后,继续从数组头开始遍历。因此,RingBuffer中至少有一个指针,来表示RingBuffer中的操作位置。另外,指针的自增操作需要做并发控制,Disruptor和本文的OptimizedQueue都使用CAS的乐观并发控制来保证指针自增的原子性,关于乐观并发控制之后会着重介绍。

Disruptor中的RingBuffer上只有一个指针,表示当前RingBuffer上消息写到了哪里,此外,每个消费者会维护一个sequence表示自己在RingBuffer上读到哪里,从这个角度讲,Disruptor中的RingBuffer上实际有消费者数+1个指针。由于我们要实现的是一个单消息单消费的阻塞队列,只要维护一个读指针(对应消费者)和一个写指针(对应生产者)即可,无论哪个指针,每次读写操作后都自增一次,一旦越界,即从数组头开始继续读写

6. Disruptor的核心概念

先从了解 Disruptor 的核心概念开始,来了解它是如何运作的。下面介绍的概念模型,既是领域对象,也是映射到代码实现上的核心对象。

  1. RingBuffer
    如其名,环形的缓冲区。曾经 RingBuffer 是 Disruptor 中的最主要的对象,但从3.0版本开始,其职责被简化为仅仅负责对通过 Disruptor 进行交换的数据(事件)进行存储和更新。在一些更高级的应用场景中,Ring Buffer 可以由用户的自定义实现来完全替代。
  2. SequenceDisruptor
    通过顺序递增的序号来编号管理通过其进行交换的数据(事件),对数据(事件)的处理过程总是沿着序号逐个递增处理。一个 Sequence 用于跟踪标识某个特定的事件处理者( RingBuffer/Consumer )的处理进度。虽然一个 AtomicLong 也可以用于标识进度,但定义 Sequence 来负责该问题还有另一个目的,那就是防止不同的 Sequence 之间的CPU缓存伪共享(Flase Sharing)问题。(注:这是 Disruptor 实现高性能的关键点之一,网上关于伪共享问题的介绍已经汗牛充栋,在此不再赘述)。
  3. Sequencer
    Sequencer 是 Disruptor 的真正核心。此接口有两个实现类 SingleProducerSequencer、MultiProducerSequencer ,它们定义在生产者和消费者之间快速、正确地传递数据的并发算法。
  4. Sequence Barrier
    用于保持对RingBuffer的 main published Sequence 和Consumer依赖的其它Consumer的 Sequence 的引用。 Sequence Barrier 还定义了决定 Consumer 是否还有可处理的事件的逻辑。
  5. Wait Strategy
    定义 Consumer 如何进行等待下一个事件的策略。 (注:Disruptor 定义了多种不同的策略,针对不同的场景,提供了不一样的性能表现)
  6. Event
    在 Disruptor 的语义中,生产者和消费者之间进行交换的数据被称为事件(Event)。它不是一个被 Disruptor 定义的特定类型,而是由 Disruptor 的使用者定义并指定。
  7. EventProcessor
    EventProcessor 持有特定消费者(Consumer)的 Sequence,并提供用于调用事件处理实现的事件循环(Event Loop)。
  8. EventHandler
    Disruptor 定义的事件处理接口,由用户实现,用于处理事件,是 Consumer 的真正实现。
  9. Producer
    即生产者,只是泛指调用 Disruptor 发布事件的用户代码,Disruptor 没有定义特定接口或类型。
    在这里插入图片描述
    最后进行总结:
    RingBuffer——Disruptor底层数据结构实现,核心类,是线程间交换数据的中转地;
    Sequencer——序号管理器,负责消费者/生产者各自序号、序号栅栏的管理和协调;
    Sequence——序号,声明一个序号,用于跟踪ringbuffer中任务的变化和消费者的消费情况;
    SequenceBarrier——序号栅栏,管理和协调生产者的游标序号和各个消费者的序号,确保生产者不会覆盖消费者未来得及处理的消息,确保存在依赖的消费者之间能够按照正确的顺序处理;
    EventProcessor——事件处理器,监听RingBuffer的事件,并消费可用事件,从RingBuffer读取的事件会交由实际的生产者实现类来消费;它会一直侦听下一个可用的序号,直到该序号对应的事件已经准备好。
    EventHandler——业务处理器,是实际消费者的接口,完成具体的业务逻辑实现,第三方实现该接口;代表着消费者。
    Producer——生产者接口,第三方线程充当该角色,producer向RingBuffer写入事件。

这篇关于并发编程专题之Disruptor框架的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/791887

相关文章

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核

C#反射编程之GetConstructor()方法解读

《C#反射编程之GetConstructor()方法解读》C#中Type类的GetConstructor()方法用于获取指定类型的构造函数,该方法有多个重载版本,可以根据不同的参数获取不同特性的构造函... 目录C# GetConstructor()方法有4个重载以GetConstructor(Type[]

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

高并发环境中保持幂等性

在高并发环境中保持幂等性是一项重要的挑战。幂等性指的是无论操作执行多少次,其效果都是相同的。确保操作的幂等性可以避免重复执行带来的副作用。以下是一些保持幂等性的常用方法: 唯一标识符: 请求唯一标识:在每次请求中引入唯一标识符(如 UUID 或者生成的唯一 ID),在处理请求时,系统可以检查这个标识符是否已经处理过,如果是,则忽略重复请求。幂等键(Idempotency Key):客户端在每次

cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个?

跨平台系列 cross-plateform 跨平台应用程序-01-概览 cross-plateform 跨平台应用程序-02-有哪些主流技术栈? cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个? cross-plateform 跨平台应用程序-04-React Native 介绍 cross-plateform 跨平台应用程序-05-Flutte

Spring框架5 - 容器的扩展功能 (ApplicationContext)

private static ApplicationContext applicationContext;static {applicationContext = new ClassPathXmlApplicationContext("bean.xml");} BeanFactory的功能扩展类ApplicationContext进行深度的分析。ApplicationConext与 BeanF

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。

Go Playground 在线编程环境

For all examples in this and the next chapter, we will use Go Playground. Go Playground represents a web service that can run programs written in Go. It can be opened in a web browser using the follow