Python和Google Colab进行卫星图像二维小波变化和机器学习

2024-03-09 18:36

本文主要是介绍Python和Google Colab进行卫星图像二维小波变化和机器学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2D 小波分解是图像处理中的一种流行技术,使用不同的滤波器将图像分解为不同的频率分量(“近似”和“细节”系数)。该技术对于各种图像处理任务特别有用,例如压缩、去噪、特征提取和边缘检测。

在本文中,我们将演示如何在 Google Colab 中使用 Python 下载高分辨率样本卫星图像,执行 2D 小波分解,可视化高频和低频分量,并使用逆小波方法重建图像,机器学习(ML)算法和耦合线性回归优化模型。为了提高 ML 模型的复杂性,我们将从输入中消除主要组件,并仅使用细节组件重新训练 ML 模型。在整个过程中,我们将评估每种方法在重建阶段的性能,并将 ML 模型的输出可视化。

目录

  1. 🌟简介
  2. 🌐 在 Google Colab 中下载卫星图像
  3. ⚙️ 应用小波分解
  4. 🔄 使用小波逆变换重建图像
  5. 🔄 使用 ML 算法重建图像
  6. 🔄 使用线性回归模型重建图像
  7. 🔄 使用耦合线性回归模型和优化算法重建图像
  8. 📈 评估不同的重建方法
  9. 🔃 使用没有近似系数的 ML 重建图像
  10. 📄 结论

🌟简介

小波分解的过程包括对图像应用一系列高通和低通滤波器,将图像分离成不同的频率分量。通常,分解分多个阶段完成,在每个级别生成一组近似系数和细节系数。近似系数代表图像的低频分量,而细节系数则捕获高频分量。

小波分解通常与其他技术(例如机器学习)结合使用,以增强图像的分析和处理。通过利用小波的多分辨率功能,研究人员和从业人员可以为各种图像相关任务开发更有效和高效的算法。

总体而言,小波分解已成为图像处理领域的重要工具,并在卫星图像分析、医学成像、信号处理等各个领域都有应用。如果您有兴趣探索 2D 小波分解和 ML 算法在无人机图像中缩小地表温度的主要应用之一

🌐 在 Google Colab 中下载卫星图像

第一步涉及找到下载高分辨率图像的方法。为此,强烈推荐使用 Google 地图的高分辨率航空和卫星图像,尤其是在城市地区。使用 Qiusheng Wu 创建的库可以简化此步骤。确保您已安装必要的组件,包括“segment-geospatial”、“leafmap”和“localtileserver”。接下来,定义所需感兴趣区域 (AOI) 的纬度和经度并继续绘制多边形:

%pip install segment-geospatial leafmap localtileserver
import os
import leafmap
from samgeo import SamGeo, tms_to_geotiff
m = leafmap.Map(center=[37.716956, -120.951107], zoom=20, height="800px")
m.add_basemap("SATELLITE")
m

 

bbox = m.user_roi_bounds()
image = "satellite.tif"
tms_to_geotiff(output=image, bbox=bbox, zoom=20, source="Satellite", overwrite=True)

在最后三行中,将感兴趣区域 (AOI) 的边界分配给“bbox”变量,设置输出名称,然后执行“tms_to_geotiff”以指定名称保存卫星图像,在本例中为“satellite” .tif”。

⚙️ 应用小波分解

为了对 2D 图像执行小波分解,我们将使用 Rasterio 库读取下载的图像,并使用 Daubechies 小波家族的一个成员(例如 db1)和“对称”模式实现 2D 分解。

Daubechies 小波是正交小波族,广泛应用于信号处理和图像压缩。“DB”后面的数字表示小波函数中消失矩的数量。小波的消失矩越多,它就越平滑。

另一方面,模式是指执行小波分解的具体方式。该模式可以确定如何计算小波系数以及分解过程如何处理图像的边缘和边界。不同的模式可能导致小波分解输出的变化,特别是在图像的边缘。

小波分解后,原始图像将被划分为不同的频率分量。近似系数表示为cA,而cH、cV和cD分别称为水平、垂直和对角线细节系数。这些系数中的每一个都捕获有关水平、垂直和对角边缘的信息。图像分解后,将绘制每个子带:

import pywt
import rasterio
import numpy as np
import matplotlib.pyplot as plt# Load GeoTIFF image
with rasterio.open('satellite.tif') as src:img = src.read(1)# Perform 2D wavelet decomposition
coeffs = pywt.dwt2(img, 'db1', mode='symmetric')# Extract detail and approximation coefficients
cA, (cH, cV, cD) = coeffs# Plot the decomposed coefficients
fig, ax = plt.subplots(2, 2, figsize=(10, 10))
ax[0, 0].imshow(cA, cmap='seismic')
ax[0, 0].set_title('Approximation Coefficient')
ax[0, 1].imshow(cH, cmap='seismic')
ax[0, 1].set_title('Horizontal Detail Coefficient')
ax[1, 0].imshow(cV, cmap='seismic')
ax[1, 0].set_title('Vertical Detail Coefficient')
ax[1, 1].imshow(cD, cmap='seismic')
ax[1, 1].set_title('Diagonal Detail Coefficient')
plt.show()

在上图中,图像的主要部分已保持在近似系数内,而其余元素代表各种方向边缘特征。

这篇关于Python和Google Colab进行卫星图像二维小波变化和机器学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/791589

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为