【分布式Tensorflow(0.11.0)问题 未解决】Segmentation fault (core dumped)

本文主要是介绍【分布式Tensorflow(0.11.0)问题 未解决】Segmentation fault (core dumped),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有三个测试,主函数是基本一样的,就是模型不同,但是均以 Segmentation fault (core dumped) 出错。


在我上一篇问题记录里,是以dummy数据集测试的,只有前向计算,没有参数更新和优化等操作,因此重新写了一个脚本,使用真实的数据集。


train数据集:

960831张图片(224*224),已转换为97个tfrecords文件,如下所示:

[root@dl1 train]# ls
train_224_0.tfrecords   train_224_32.tfrecords  train_224_55.tfrecords  train_224_78.tfrecords
train_224_10.tfrecords  train_224_33.tfrecords  train_224_56.tfrecords  train_224_79.tfrecords
train_224_11.tfrecords  train_224_34.tfrecords  train_224_57.tfrecords  train_224_7.tfrecords
train_224_12.tfrecords  train_224_35.tfrecords  train_224_58.tfrecords  train_224_80.tfrecords
train_224_13.tfrecords  train_224_36.tfrecords  train_224_59.tfrecords  train_224_81.tfrecords
train_224_14.tfrecords  train_224_37.tfrecords  train_224_5.tfrecords   train_224_82.tfrecords
train_224_15.tfrecords  train_224_38.tfrecords  train_224_60.tfrecords  train_224_83.tfrecords
train_224_16.tfrecords  train_224_39.tfrecords  train_224_61.tfrecords  train_224_84.tfrecords
train_224_17.tfrecords  train_224_3.tfrecords   train_224_62.tfrecords  train_224_85.tfrecords
train_224_18.tfrecords  train_224_40.tfrecords  train_224_63.tfrecords  train_224_86.tfrecords
train_224_19.tfrecords  train_224_41.tfrecords  train_224_64.tfrecords  train_224_87.tfrecords
train_224_1.tfrecords   train_224_42.tfrecords  train_224_65.tfrecords  train_224_88.tfrecords
train_224_20.tfrecords  train_224_43.tfrecords  train_224_66.tfrecords  train_224_89.tfrecords
train_224_21.tfrecords  train_224_44.tfrecords  train_224_67.tfrecords  train_224_8.tfrecords
train_224_22.tfrecords  train_224_45.tfrecords  train_224_68.tfrecords  train_224_90.tfrecords
train_224_23.tfrecords  train_224_46.tfrecords  train_224_69.tfrecords  train_224_91.tfrecords
train_224_24.tfrecords  train_224_47.tfrecords  train_224_6.tfrecords   train_224_92.tfrecords
train_224_25.tfrecords  train_224_48.tfrecords  train_224_70.tfrecords  train_224_93.tfrecords
train_224_26.tfrecords  train_224_49.tfrecords  train_224_71.tfrecords  train_224_94.tfrecords
train_224_27.tfrecords  train_224_4.tfrecords   train_224_72.tfrecords  train_224_95.tfrecords
train_224_28.tfrecords  train_224_50.tfrecords  train_224_73.tfrecords  train_224_96.tfrecords
train_224_29.tfrecords  train_224_51.tfrecords  train_224_74.tfrecords  train_224_9.tfrecords
train_224_2.tfrecords   train_224_52.tfrecords  train_224_75.tfrecords  train_224_image_mean.npy
train_224_30.tfrecords  train_224_53.tfrecords  train_224_76.tfrecords
train_224_31.tfrecords  train_224_54.tfrecords  train_224_77.tfrecords


Main函数:
def main(_):ps_hosts = FLAGS.ps_hosts.split(",")worker_hosts = FLAGS.worker_hosts.split(",")cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})server =   tf.train.Server(cluster,job_name=FLAGS.job_name,task_index=FLAGS.task_index)issync = FLAGS.issyncif FLAGS.job_name == "ps":server.join()elif FLAGS.job_name == "worker":images, labels = ...with tf.device(tf.train.replica_device_setter(worker_device="/job:worker/task:%d" % FLAGS.task_index,cluster=cluster)):global_step = tf.Variable(0, name='global_step', trainable=False)# 修改这里,调用不同的模型logits, parameters = inference(images)logits = tf.contrib.layers.flatten(logits)cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=logits, name='xentropy')loss_value = tf.reduce_mean(cross_entropy, name='xentropy_mean')       optimizer = tf.train.GradientDescentOptimizer(learning_rate)       grads_and_vars = optimizer.compute_gradients(loss_value)if issync == 1:# Synchronous moderep_op = tf.train.SyncReplicasOptimizer(optimizer,replicas_to_aggregate=len(worker_hosts),replica_id=FLAGS.task_index,total_num_replicas=len(worker_hosts),use_locking=True)train_op = rep_op.apply_gradients(grads_and_vars, global_step=global_step)init_token_op = rep_op.get_init_tokens_op()chief_queue_runner = rep_op.get_chief_queue_runner()else:# Asynchronous modetrain_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)init_op = tf.initialize_all_variables()saver = tf.train.Saver()tf.summary.scalar('cost', loss_value)summary_op = tf.summary.merge_all()sv = tf.train.Supervisor(is_chief=(FLAGS.task_index == 0),logdir="./alexnet_checkpoint",init_op=init_op,summary_op=None,saver=saver,global_step=global_step,save_model_secs=60)with sv.prepare_or_wait_for_session(server.target) as sess:# Syncif FLAGS.task_index == 0 and issync == 1:sv.start_queue_runners(sess, [chief_queue_runner])sess.run(init_token_op)step = 0while not sv.should_stop():try:start_time = time.time()     _, loss_v, step = sess.run([train_op, loss_value, global_step])if step > 1000:breakduration = time.time() - start_timeif step >= 10:if not step % 10:             print ('%s: step %d, duration = %.3f' % (da

这篇关于【分布式Tensorflow(0.11.0)问题 未解决】Segmentation fault (core dumped)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/791317

相关文章

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

XML重复查询一条Sql语句的解决方法

《XML重复查询一条Sql语句的解决方法》文章分析了XML重复查询与日志失效问题,指出因DTO缺少@Data注解导致日志无法格式化、空指针风险及参数穿透,进而引发性能灾难,解决方案为在Controll... 目录一、核心问题:从SQL重复执行到日志失效二、根因剖析:DTO断裂引发的级联故障三、解决方案:修复

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如