本文主要是介绍爬取好大夫网站医生数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
一、主要过程:
1.爬取医生主页url
2.爬取医生个人信息
二、具体过程
1.爬取医生主页url
观察url链接结构,可以发现同一种病的网址,在不同页面切换时,只有.htm前的数字回变,且页码与链接对应。而对于不同种类的病,如类风湿,改变的也仅是网址种jibing/后的部分。因此,在爬取医生个人主页url时,可以通过设置两个循环来设置读取不同病不同页码。
from requests_html import HTMLSession
from lxml import etree
import pandas as pd
from requests_html import HTMLSession
import time
session = HTMLSession()
sel=' div.oh.zoom.lh180 > p:nth-child(1) > a.blue_a3'
#常见五种疾病:糖尿病、腰椎盘突出、类风湿关节炎、高血压、颈椎病
bings=['tangniaobing','yaozhuijianpantuchu','leifengshixingguanjieyan','gaoxueya','jingzhuibing']
def get_text_link_from_sel(sel):mylist = []try:for bing in bings:for i in range(2):time.sleep(1)url = 'https://www.haodf.com/jibing/'+ str(bing)+'/daifu_all_all_all_all_all_all_'+str(i)+'.htm'r = session.get(url)results = r.html.find(sel)for result in results:mytext = result.textmylink = list(result.absolute_links)[0]mylist.append((mytext, mylink))return mylistexcept:return None
df = pd.DataFrame(get_text_link_from_sel(sel))
df.to_csv('doctorurl.csv', encoding='gbk', index=False)
2.爬取医生个人信息
与爬取url过程类似,这里根据需要分析的问题共爬取了10个指标,包括姓名、职位、单位、所属科室、综合推荐热度、擅长、简介(包括社会任职、获奖荣誉、科研成果)。
如下图所示,可以自由选择想爬取的内容,复制路径,在下面代码替换一下就ok啦!
from requests_html import HTMLSession
from lxml import etree
import time
import csv
from retrying import retry
df = pd.read_csv('doctorurl_7.csv',header=None)
data = [] #空列表存储团队名称
for j in range(1,500): try:url = df.iloc[[j]].values[0][1]session = HTMLSession()r = session.get(url)retry(stop_max_attempt_number=10, wait_fixed=2000)#姓名sel0='div.banner-wrap > div > div.profile-container.clearfix > div.profile-txt > h1'name = r.html.find(sel0)[0].text#职位sel0_1='div.banner-wrap > div > div.profile-container.clearfix > div.profile-txt > span.doctor-title'career = r.html.find(sel0_1)[0].textsel0_3='div.banner-wrap > div > div.profile-container.clearfix > div.profile-txt > ul > li > a:nth-child(1)'position = r.html.find(sel0_3)try:position=position[0].textexcept:position=Nonesel0_4='div.banner-wrap > div > div.profile-container.clearfix > div.profile-txt > ul > li > a:nth-child(2)'department = r.html.find(sel0_4)try:department=department[0].textexcept:department=None#综合推荐热度sel0_5='div.banner-wrap > div > div.profile-container.clearfix > ul > li:nth-child(1) > span.value'score = r.html.find(sel0_5)try:score=score[0].textexcept:score=Nonesel1='div.wrap-container.clearfix > main > section.container.brief-outer > div > div:nth-child(1) > div > p'shanchang = r.html.find(sel1)[0].textsel1_1='div.wrap-container.clearfix > main > section.container.brief-outer > div > div:nth-child(2) > div > div > p'total_intro = r.html.find(sel1_1)try:total_intro=total_intro[0].textexcept:total_intro=Nonesel2='div.wrap-container.clearfix > main > section.container.brief-outer > div > div:nth-child(2) > div > div > div:nth-child(2)>p'social_job = r.html.find(sel2)try:social_job=social_job[0].textexcept:social_job=Nonesel3='div.wrap-container.clearfix > main > section.container.brief-outer > div > div:nth-child(2) > div > div > div:nth-child(3)>p'honor = r.html.find(sel3)try: honor = honor[0].textexcept:honor = Nonesel4='div.wrap-container.clearfix > main > section.container.brief-outer > div > div:nth-child(2) > div > div > div:nth-child(4)>p'sci_achi = r.html.find(sel4)try:sci_achi=sci_achi[0].textexcept:sci_achi=Nonedata.append([name,career,position,department,score,total_intro,shanchang,social_job,honor,sci_achi])print("第" + str(j) + "次成功")if j%10 == 0:time.sleep(10)except IndexError:#passprint("第" + str(j) + "次失败:")
这篇关于爬取好大夫网站医生数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!