Manacher 算法讲解

2024-03-09 05:48
文章标签 算法 讲解 manacher

本文主要是介绍Manacher 算法讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一:背景

  给定一个字符串,求出其最长回文子串。例如:

  1. s="abcd",最长回文长度为 1;
  2. s="ababa",最长回文长度为 5;
  3. s="abccb",最长回文长度为 4,即bccb。

以上问题的传统思路大概是,遍历每一个字符,以该字符为中心向两边查找。其时间复杂度为$O(n^2)$,效率很差。

1975年,一个叫Manacher的人发明了一个算法,Manacher算法(中文名:马拉车算法),该算法可以把时间复杂度提升到$O(n)$。下面来看看马拉车算法是如何工作的。

 作用:时间复杂度O(n)求解最长回文子串。

二:算法过程分析

由于回文分为偶回文(比如 bccb)和奇回文(比如 bcacb),而在处理奇偶问题上会比较繁琐,所以这里我们使用一个技巧,具体做法是:在字符串首尾,及各字符间各插入一个字符(前提这个字符未出现在串里)。

举个例子:s="abbahopxpo",转换为s_new="$#a#b#b#a#h#o#p#x#p#o#"(这里的字符 $ 只是为了防止越界,下面代码会有说明),如此,s 里起初有一个偶回文abba和一个奇回文opxpo,被转换为#a#b#b#a##o#p#x#p#o#,长度都转换成了奇数

定义一个辅助数组int p[],其中p[i]表示以 i 为中心的最长回文的半径,例如:

i012345678910111213141516171819
s_new[i]$#a#b#b#a#h#o#p#x#p#
p[i] 1212521212121214121

可以看出,p[i] - 1正好是原字符串中以i为中心的最长回文串长度

接下来的重点就是求解 p 数组,如下图:

前提条件 设置两个变量,mx 和 id 。mx 代表以 id 为中心的最长回文的右边界,

                    也就是  mx = id + p[id]

目的 :               求p[i],也就是以 i 为中心的最长回文半径,

如果i < mx,如上图,那么:

if (i < mx)  p[i] = min(p[2 * id - i], mx - i);

 解释下代码含义: 首先 : 2 * id - i 为 i 关于 id 的对称点即上图的 j 点,

                                  假设我们都已经求出:p[id] 、p[j] ,其中 p[j]以 j 为中心的最长回文半径

                                    p[id]以id为中心的最长回文半径。

                                  那我们可以就利用 p[j] 和 p[id] 来加快查找,

                                  为什么?看图说话,从上图 ,我们只能看出  p[i]  等于 mx-i 和 p[id] 较小的那个,

                                  也就是  p[i] = min (p[2 * id - i], mx - i )  ;但是  p[i] 有可能:还可以变大,或者不能变大了,

                                  但是 我们不能 从比较过得数据推算出来,

                                   只能从p[i] = min (p[2 * id - i], mx - i ) 开始,继续老老实实的找; 

                                    为什么是O(n)最后再说。

                                   

 

   如果 i >=mx  就老老实实的一个一个找。

 

三:算法复杂度分析

文章开头已经提及,Manacher算法为线性算法,即使最差情况下其时间复杂度亦为$O(n)$,在进行证明之前,我们还需要更加深入地理解上述算法过程。

根据回文的性质,p[i]的值基于以下三种情况得出:

(1):j 的回文串有一部分在 id 的之外,如下图:

上图中,黑线为 id 的回文,i 与 j 关于 id 对称,红线为 j 的回文。那么根据代码此时p[i] = mx - i,即紫线。那么p[i]还可以更大么?答案是不可能!见下图:

假设右侧新增的紫色部分是p[i]可以增加的部分,那么根据回文的性质,a 等于 d ,也就是说 id 的回文不仅仅是黑线,而是黑线+两条紫线,矛盾,所以假设不成立,故p[i] = mx - i,不可以再增加一分。

(2):j 回文串全部在 id 的内部,如下图:

根据代码,此时p[i] = p[j],那么p[i]还可以更大么?答案亦是不可能!见下图:

假设右侧新增的红色部分是p[i]可以增加的部分,那么根据回文的性质,a 等于 b ,也就是说 j 的回文应该再加上 a 和 b ,矛盾,所以假设不成立,故p[i] = p[j],也不可以再增加一分。

(3):j 回文串左端正好与 id 的回文串左端重合,见下图:

根据代码,此时p[i] = p[j]p[i] = mx - i,并且p[i]还可以继续增加,所以需要

while (s_new[i - p[i]] == s_new[i + p[i]]) p[i]++;

根据(1)(2)(3),很容易推出Manacher算法的最坏情况,即为字符串内全是相同字符的时候。在这里我们重点研究Manacher()中的for语句,推算发现for语句内平均访问每个字符5次,即时间复杂度为:$T_{worst}(n)=O(n)$。

同理,我们也很容易知道最佳情况下的时间复杂度,即字符串内字符各不相同的时候。推算得平均访问每个字符4次,即时间复杂度为:$T_{best}(n)=O(n)$。

综上,Manacher算法的时间复杂度为$O(n)$

四:代码

#include <iostream>  
#include <cstring>
#include <algorithm>  using namespace std;char s[1000];
char s_new[2000];
int p[2000];int Init()
{int len = strlen(s);s_new[0] = '$';s_new[1] = '#';int j = 2;for (int i = 0; i < len; i++){s_new[j++] = s[i];s_new[j++] = '#';}s_new[j] = '\0';  // 别忘了哦return j;  // 返回 s_new 的长度
}int Manacher()
{int len = Init();  // 取得新字符串长度并完成向 s_new 的转换int max_len = -1;  // 最长回文长度int id;int mx = 0;for (int i = 1; i < len; i++){if (i < mx)p[i] = min(p[2 * id - i], mx - i);  // 需搞清楚上面那张图含义, mx 和 2*id-i 的含义elsep[i] = 1;while (s_new[i - p[i]] == s_new[i + p[i]])  // 不需边界判断,因为左有'$',右有'\0'p[i]++;// 我们每走一步 i,都要和 mx 比较,我们希望 mx 尽可能的远,这样才能更有机会执行 if (i < mx)这句代码,从而提高效率if (mx < i + p[i]){id = i;mx = i + p[i];}max_len = max(max_len, p[i] - 1);}return max_len;
}int main()
{while (printf("请输入字符串:\n")){scanf("%s", s);printf("最长回文长度为 %d\n\n", Manacher());}return 0;
}

 

这篇关于Manacher 算法讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/789695

相关文章

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

C++快速排序超详细讲解

《C++快速排序超详细讲解》快速排序是一种高效的排序算法,通过分治法将数组划分为两部分,递归排序,直到整个数组有序,通过代码解析和示例,详细解释了快速排序的工作原理和实现过程,需要的朋友可以参考下... 目录一、快速排序原理二、快速排序标准代码三、代码解析四、使用while循环的快速排序1.代码代码1.由快