基础GamePlay知识-碰撞检测

2024-03-08 23:36

本文主要是介绍基础GamePlay知识-碰撞检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

将会持续更新gameplay的一些基础知识,一同学习。

扇形检测

扇形检测是Gameplay里面很常见的场景。比如荒野乱斗中,大部分的近战角色都是扇形攻击。在扇形范围内就认为是受击。
扇形检测只有两个参数,一个是扇形的角度一个是扇形的半径大小。
在这里插入图片描述

效果

在这里插入图片描述

获取鼠标朝向

技能必然是和鼠标朝向一致的,所以学习检测务必先学一下怎么得到鼠标朝向,以及得到朝向对应的旋转角度。
思路是利用Camera.main.ScreenPointToRay(Input.mousePosition)方法,能够得到相机朝向屏幕空间下某点的射线,从而得到射线的碰撞点,然后计算角色朝向碰撞点的方向,这时候碰撞点的横坐标x和轴坐标z是已知的,所以用反三角函数Atan2可以得到旋转到碰撞点的旋转角度。
值得一提的是Camera.main.ScreenPointToRay(Input.mousePosition)在诸如用户注视某个物品/3dui的交互上面都可以使用。

 void Update(){ray = Camera.main.ScreenPointToRay(Input.mousePosition);RaycastHit hit;if (Physics.Raycast(ray, out hit)){//射线检测的是平面点的位置,实际需要的是平行于平面的方向,所以修改y坐标Vector3 horizontalPoint = new Vector3(hit.point.x, transform.position.y, hit.point.z);Debug.DrawLine(transform.position, horizontalPoint, Color.red);//方便观察skillDirection = (horizontalPoint - transform.position).normalized;//z轴取反是因为unity的旋转api是顺时针旋转的skillAngle = Mathf.Atan2(-skillDirection.z, skillDirection.x) * Mathf.Rad2Deg;}}

尝试利用画出一个扇形

为了方便我们看检测的结果,先实现一个绘制扇形的工具将技能范围画出来,这里提供使用Debug.DrawLine和使用LineRender两种办法。需要注意如果用LineRender的SetPostition方法,需要在组件里面设置好Position数组的大小,防止出现数组越界的报错。
在这里插入图片描述
利用LineRender和Debug.DrawLine的思路是一样的,先绘制扇形的中心点以及左边界点,再从左边界点往另一个边界以某个角度间隔绘制一个个点,连接起来就是一个圆弧

private void DrawFan_DebugDrawLine(float radius, int euler){int segments = 100; //圆弧那一段需要用多少个点来表示float deltaAngle = euler / segments;Vector3 forward = transform.forward;Vector3[] vertices = new Vector3[segments + 2];vertices[0] = transform.position;for (int i = 1; i < vertices.Length; i++){float curAngle = -euler / 2 + deltaAngle * (i - 1) + skillAngle;//从-1/2扇形角度开始绘制,每次偏移deltaAngleVector3 pos = Quaternion.Euler(0f, curAngle, 0f) * forward * radius + transform.position;vertices[i] = pos;}// 画圆弧for (int i = 1; i < vertices.Length - 1; i++){Debug.Log(vertices[i]);Debug.DrawLine(vertices[i], vertices[i + 1], showColor);}// 画两条边Debug.DrawLine(vertices[0], vertices[vertices.Length - 1], showColor);Debug.DrawLine(vertices[0], vertices[1], showColor);}/// <summary>/// 利用LinerRender绘制扇形/// </summary>private void DrawFan_LineRender(float radius, int euler){ResetLinerRenderPoints();m_LineRenderer.startColor = showColor; //碰撞的时候会切换展示的颜色m_LineRenderer.endColor = showColor;m_LineRendererPoints.Add(transform.position);//每一度一个点,绘制思路和debug.DrawLine相同for(int angles = -euler/2; angles <= euler/2; angles++){m_LineRendererPoints.Add(Quaternion.Euler(0, angles + skillAngle, 0) * transform.right * radius + transform.position);}m_LineRenderer.SetPositions(m_LineRendererPoints.ToArray());}

扇形和点的碰撞检测

判断某个点在扇形内的办法
距离判断:
点和玩家的距离小于扇形半径。
角度判断:
设玩家到受击角色的向量为a,玩家技能朝向为b
方法一:判断a和b所形成的角度小于1/2的扇形夹角。
只需要拿到a和单位向量和b的单位向量进行点积,就能够得到a和b夹角的cos值,再利用Acos得到夹角大小。

设扇形左边界为left,扇形右边界为right
方法二:利用向量叉乘,如果a在扇形的左边界之外或扇形的右边界之外则不满足。
这里需要注意Unity的世界坐标系是左手系,叉乘的方向满足的是左手定则
a x left所得向量的y轴坐标大于0说明在左边界以左,
right x a所得向量的的y轴左边大于0说明在右边界以右

这里两个办法都实现一下

三角函数法

    public bool Dectect_ACos(Vector3 enemyPos){float distance = Vector3.Distance(transform.position, enemyPos);//距离超过检测半径if (distance > radius){return false;}Vector3 enemyDirection = (enemyPos - transform.position).normalized;//两个单位向量的点乘等于其夹角的余弦值float enemyAngle = Mathf.Acos(Vector3.Dot(skillDirection, enemyDirection)) * Mathf.Rad2Deg;//敌人朝向和技能朝向的夹角小于二分之一扇形角说明在扇形范围内if (enemyAngle <= angle / 2){return true;}return false;}

向量叉乘

    public bool Dectect_Cross(Vector3 enemyPos){float distance = Vector3.Distance(transform.position, enemyPos);//距离超过检测半径if (distance > radius){return false;}//扇形左边界Vector3 leftBound = Quaternion.Euler(0f, -angle / 2 + skillAngle, 0f) * transform.right;Debug.DrawLine(transform.position, transform.position + leftBound, Color.blue);//扇形右边界Vector3 RightBound = Quaternion.Euler(0f, angle / 2 + skillAngle, 0f) * transform.right;Debug.DrawLine(transform.position, transform.position + RightBound , Color.yellow);Vector3 enemyDir = enemyPos - transform.position;//注意左手系的叉乘是左手定则bool isLeft = Vector3.Cross(enemyDir, leftBound).y > 0 ? true : false; bool isRight = Vector3.Cross(RightBound, enemyDir).y > 0 ? true : false;Debug.Log("isLeft:" + isLeft + "isRight" + isRight);return !isLeft && !isRight;}

完整实现

挂载在角色身上的脚本,注意鼠标是利用射线检测,所以需要再角色下面放一个平面接收射线。

using System.Collections;
using System.Collections.Generic;
using UnityEngine;public class FanDetector : MonoBehaviour
{public float radius; //扇形半径public int angle;  //扇形角度public Vector3 skillDirection;private Ray ray;private LineRenderer m_LineRenderer;private List<Vector3> m_LineRendererPoints;private Color showColor;public float skillAngle;// Start is called before the first frame updatevoid Start(){InitLineRender();}// Update is called once per framevoid Update(){GetSkillDirection(Color.green);//DrawFan_DebugDrawLine(radius, angle);DrawFan_LineRender(radius, angle);}/// <summary>/// 对外接口,敌人是否在技能范围内/// </summary>public bool Dectect(Vector3 enemyPos){bool isDecteced = Dectect_Cross(enemyPos);if(isDecteced){showColor = Color.red;return isDecteced;}showColor = Color.green;return isDecteced;}/// <summary>/// 利用Acos检测碰撞/// </summary>/// <param name="enemyPos"></param>/// <returns></returns>public bool Dectect_ACos(Vector3 enemyPos){float distance = Vector3.Distance(transform.position, enemyPos);//距离超过检测半径if (distance > radius){return false;}Vector3 enemyDirection = (enemyPos - transform.position).normalized;//两个单位向量的点乘等于其夹角的余弦值float enemyAngle = Mathf.Acos(Vector3.Dot(skillDirection, enemyDirection)) * Mathf.Rad2Deg;//敌人朝向和技能朝向的夹角小于二分之一扇形角说明在扇形范围内if (enemyAngle <= angle / 2){return true;}return false;}/// <summary>/// 利用叉乘检测/// </summary>/// <param name="enemyPos"></param>/// <returns></returns>public bool Dectect_Cross(Vector3 enemyPos){float distance = Vector3.Distance(transform.position, enemyPos);//距离超过检测半径if (distance > radius){return false;}//扇形左边界Vector3 leftBound = Quaternion.Euler(0f, -angle / 2 + skillAngle, 0f) * transform.right;Debug.DrawLine(transform.position, transform.position + leftBound, Color.blue);//扇形右边界Vector3 RightBound = Quaternion.Euler(0f, angle / 2 + skillAngle, 0f) * transform.right;Debug.DrawLine(transform.position, transform.position + RightBound , Color.yellow);Vector3 enemyDir = enemyPos - transform.position;//注意左手系的叉乘是左手定则bool isLeft = Vector3.Cross(enemyDir, leftBound).y > 0 ? true : false; bool isRight = Vector3.Cross(RightBound, enemyDir).y > 0 ? true : false;Debug.Log("isLeft:" + isLeft + "isRight" + isRight);return !isLeft && !isRight;}/// <summary>/// 获取鼠标朝向/// </summary>private void GetSkillDirection(Color color){ray = Camera.main.ScreenPointToRay(Input.mousePosition);RaycastHit hit;if (Physics.Raycast(ray, out hit)){//射线检测的是平面点的位置,实际需要的是平行于平面的方向,所以修改y坐标Vector3 horizontalPoint = new Vector3(hit.point.x, transform.position.y, hit.point.z);Debug.DrawLine(transform.position, horizontalPoint, color);skillDirection = (horizontalPoint - transform.position).normalized;//z轴取反是因为unity的旋转api是顺时针旋转的skillAngle = Mathf.Atan2(-skillDirection.z, skillDirection.x) * Mathf.Rad2Deg;}}/// <summary>/// 利用Debug工具绘制扇形/// </summary>private void DrawFan_DebugDrawLine(float radius, int euler){int segments = 100; //圆弧那一段需要用多少个点来表示float deltaAngle = euler / segments;Vector3 right = transform.right;Vector3[] vertices = new Vector3[segments + 2];vertices[0] = transform.position;for (int i = 1; i < vertices.Length; i++){float curAngle = -euler / 2 + deltaAngle * (i - 1) + skillAngle;//从-1/2扇形角度开始绘制,每次偏移deltaAngleVector3 pos = Quaternion.Euler(0f, curAngle, 0f) * right * radius + transform.position;vertices[i] = pos;}// 画圆弧for (int i = 1; i < vertices.Length - 1; i++){Debug.Log(vertices[i]);Debug.DrawLine(vertices[i], vertices[i + 1], showColor);}// 画两条边Debug.DrawLine(vertices[0], vertices[vertices.Length - 1], showColor);Debug.DrawLine(vertices[0], vertices[1], showColor);}/// <summary>/// 利用LinerRender绘制扇形/// </summary>private void DrawFan_LineRender(float radius, int euler){ResetLinerRenderPoints();m_LineRenderer.startColor = showColor;m_LineRenderer.endColor = showColor;m_LineRendererPoints.Add(transform.position);//每一度一个点,绘制思路和debug.DrawLine相同for(int angles = -euler/2; angles <= euler/2; angles++){m_LineRendererPoints.Add(Quaternion.Euler(0, angles + skillAngle, 0) * transform.right * radius + transform.position);}m_LineRenderer.SetPositions(m_LineRendererPoints.ToArray());}private void InitLineRender(){m_LineRendererPoints = new List<Vector3>();m_LineRenderer = GetComponent<LineRenderer>();m_LineRenderer.endWidth = 0.1f;m_LineRenderer.startWidth = 0.1f;m_LineRenderer.loop = true; //绘制路径将会闭合}private void ResetLinerRenderPoints(){m_LineRendererPoints.Clear();}
}

敌人身上的脚本,可以移动

using System.Collections;
using System.Collections.Generic;
using UnityEngine;public class Enemy : MonoBehaviour
{// Start is called before the first frame updatepublic float speed = 2f;private FanDetector fanSkill;void Start(){fanSkill = GameObject.FindWithTag("Player").GetComponent<FanDetector>();}// Update is called once per framevoid Update(){transform.position += Input.GetAxis("Horizontal") * speed * transform.right * Time.deltaTime;transform.position += Input.GetAxis("Vertical") * speed * transform.forward * Time.deltaTime;SkillDetect();}private void SkillDetect(){if (fanSkill.Dectect(transform.position)){Debug.Log("进入扇形技能范围");}}}

这篇关于基础GamePlay知识-碰撞检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/788790

相关文章

RedHat运维-Linux文本操作基础-AWK进阶

你不用整理,跟着敲一遍,有个印象,然后把它保存到本地,以后要用再去看,如果有了新东西,你自个再添加。这是我参考牛客上的shell编程专项题,只不过换成了问答的方式而已。不用背,就算是我自己亲自敲,我现在好多也记不住。 1. 输出nowcoder.txt文件第5行的内容 2. 输出nowcoder.txt文件第6行的内容 3. 输出nowcoder.txt文件第7行的内容 4. 输出nowcode

Vim使用基础篇

本文内容大部分来自 vimtutor,自带的教程的总结。在终端输入vimtutor 即可进入教程。 先总结一下,然后再分别介绍正常模式,插入模式,和可视模式三种模式下的命令。 目录 看完以后的汇总 1.正常模式(Normal模式) 1.移动光标 2.删除 3.【:】输入符 4.撤销 5.替换 6.重复命令【. ; ,】 7.复制粘贴 8.缩进 2.插入模式 INSERT

零基础STM32单片机编程入门(一)初识STM32单片机

文章目录 一.概要二.单片机型号命名规则三.STM32F103系统架构四.STM32F103C8T6单片机启动流程五.STM32F103C8T6单片机主要外设资源六.编程过程中芯片数据手册的作用1.单片机外设资源情况2.STM32单片机内部框图3.STM32单片机管脚图4.STM32单片机每个管脚可配功能5.单片机功耗数据6.FALSH编程时间,擦写次数7.I/O高低电平电压表格8.外设接口

[职场] 公务员的利弊分析 #知识分享#经验分享#其他

公务员的利弊分析     公务员作为一种稳定的职业选择,一直备受人们的关注。然而,就像任何其他职业一样,公务员职位也有其利与弊。本文将对公务员的利弊进行分析,帮助读者更好地了解这一职业的特点。 利: 1. 稳定的职业:公务员职位通常具有较高的稳定性,一旦进入公务员队伍,往往可以享受到稳定的工作环境和薪资待遇。这对于那些追求稳定的人来说,是一个很大的优势。 2. 薪资福利优厚:公务员的薪资和

ps基础入门

1.基础      1.1新建文件      1.2创建指定形状      1.4移动工具          1.41移动画布中的任意元素          1.42移动画布          1.43修改画布大小          1.44修改图像大小      1.5框选工具      1.6矩形工具      1.7图层          1.71图层颜色修改          1

[FPGA][基础模块]跨时钟域传播脉冲信号

clk_a 周期为10ns clk_b 周期为34ns 代码: module pulse(input clk_a,input clk_b,input signal_a,output reg signal_b);reg [4:0] signal_a_widen_maker = 0;reg signal_a_widen;always @(posedge clk_a)if(signal_a)

00 - React 基础

1. React 基础 安装react指令 可参考: 官网官网使用教程 如: npx create-react-app 项目名如:npx create-react-app react-redux-pro JSX JSX 是一种 JavaScript 的语法扩展,类似于 XML 或 HTML,允许我们在 JavaScript 代码中编写 HTML。 const element =

AI赋能天气:微软研究院发布首个大规模大气基础模型Aurora

编者按:气候变化日益加剧,高温、洪水、干旱,频率和强度不断增加的全球极端天气给整个人类社会都带来了难以估计的影响。这给现有的天气预测模型提出了更高的要求——这些模型要更准确地预测极端天气变化,为政府、企业和公众提供更可靠的信息,以便做出及时的准备和响应。为了应对这一挑战,微软研究院开发了首个大规模大气基础模型 Aurora,其超高的预测准确率、效率及计算速度,实现了目前最先进天气预测系统性能的显著

【软考】信息系统项目管理师(高项)备考笔记——信息系统项目管理基础

信息系统项目管理基础 日常笔记 项目的特点:临时性(一次性)、独特的产品、服务或成果、逐步完善、资源约束、目的性。 临时性是指每一个项目都有确定的开始和结束日期独特性,创造独特的可交付成果,如产品、服务或成果逐步完善意味着分步、连续的积累。例如,在项目早期,项目范围的说明是粗略的,随着项目团队对目标和可交付成果的理解更完整和深入时,项目的范围也就更具体和详细。 战略管理包括以下三个过程

众所周知,配置即代码≠基础设置即代码

​前段时间翻到几条留言,问: “配置即代码和基础设施即代码一样吗?” “配置即代码是什么?怎么都是基础设施即代码?” 我们都是知道,DevOp的快速发展,让服务器管理与配置的时间大大减少,配置即代码和基础设施即代码作为DevOps的重要实践,在其中起到了关键性作用。 不少人将二者看作是一件事,配置即大代码是关于管理特定的应用程序配置设置本身,而基础设施即代码更关注的是部署支持应用程序环境所需的