超参寻优使用介绍

2024-03-08 15:10
文章标签 使用 介绍 寻优 超参

本文主要是介绍超参寻优使用介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 实现平台:BigQuant—人工智能量化投资平台
  • 可在文末前往原文一键克隆 策略进行进一步研究

超参寻优模块简介

最近,我们上线一个新的模块——超参优化模块,它可以帮助大家对我们平台上的机器学习模型进行超参数优化,让你的收益更上一层楼,接下来就让我给大家介绍下。

超参寻优理论简介

在机器学习里,我们本质上是对损失函数进行最优化的过程。过程类似下面的曲面,算法试图去寻找损失曲面的全局最小值,当然损失曲面实际中不一定是凸曲面,
可能会更加凹凸不平,存在多个局部高低点。

在这里插入图片描述

我们还是回到主题,讲述的重点在于超参数寻优的意义。当我们损失曲面给定的时候,我们寻找最优点的路径可能会有一些模型以为的超参数来确定。形象的比喻,
如下图,不同的超参数可能对应这一条不同的寻优路径,比如当我们控制学习率的时候,模型每一步权重更新的部长就会不一样,这样可能导致寻优路径产生根本的差异,
尤其是在高维空间下。

在这里插入图片描述

模块使用介绍

在介绍了超参优化的原理后,就来介绍我们提供的超参寻优模块工具。

首先打开可视化策略,然后在左边的高级优化下面找到超参搜索,并把它拖进来:

在这里插入图片描述

单击模块后,我们能够在右边看到模块的属性,包括:

  • 超参数输入
  • 评分函数
  • 参数搜索方法
  • 搜索迭代次数
  • 并行运行作业数

超参数输入

在这里构造参数搜索空间。在超参数输入里,我们只需要指定需要调优的参数名,已经参数的搜索空间就ok了,下面给出了示例:

def bigquant_run():param_grid = {}# 在这里设置需要调优的参数备选param_grid['m6.number_of_trees'] = [5, 10, 20]return param_grid

切换到代码模式,可以参考所有可以调优的参数,甚至包括算法和算法的版本都可以修改。

在这里插入图片描述

在这里插入图片描述

评分函数

评分函数是用来评价一组参数好坏的指标,下面我们给出了一个示例,以回测最终的夏普比作为评分函数:

def bigquant_run(result):score = result.get('m19').read_raw_perf()['sharpe'].tail(1)[0]return score

参数搜索算法

参数搜索算法有两个可选项:

  • 网格搜索
  • 随机搜索

网格搜索是指给定参数组合后,遍历所有的排列组合。随机搜索指的是每次从所有的排列组合中,随机抽出一组参数,在具有很多参数的情况下,随机搜索会更有效率。

搜索迭代次数

在随机搜索的情况下,最多迭代的次数。

并行运行作业数

指用多少个线程同时搜索所有参数空间

示例策略

在这里插入图片描述

源码地址:《超参寻优使用简介》

本文由BigQuant人工智能量化投资平台原创推出,版权归BigQuant所有,转载请注明出处。

这篇关于超参寻优使用介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/787497

相关文章

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}