释机器学习中的召回率、精确率、准确率

2024-03-08 12:44

本文主要是介绍释机器学习中的召回率、精确率、准确率,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

准确率和召回率之间通常存在一定的折衷关系——当阈值较高时,分类器的准确率较高,但召回率较低;

当阈值较低时,分类器的召回率较高,但准确率较低

  • 召回率(灵敏度):对实际为正类的样本,模型能识别出多少是正类(灵敏度)
    分母:实际类别为正的样本个数(TP+FN=实际为正类的样本个数)
    分子:预测为正实际为正的样本个数(TP)
  • 精确率:对正类样本的预测准确程度,
    分母:预测为正的样本个数(TP+FP=正确预测+错误预测)
    分子:预测为正实际为正(TP)
  • 准确率:对所有类别的样本的预测准确程度,
    分母:所有类别样本个数=(预测为正样本个数+预测为负样本个数)
    分子:正确预测样本个数=(预测为正实际为正+预测为负实际为负)


 

召回率(把正样本叫唤回来,因为我们把本来是正的样本给否定了,提升它就是尽量不要把正确的搞错了,也就是不漏报),精准率就是看我们预测的正样本的到底有多少是真正的正样本,因为有一些负的我们把它判为正了,提升精准率就是不错报。

精确率:分母是预测到的正类,精确率的提出是让模型的现有预测结果尽可能不出错(宁愿漏检,也不能让现有的预测有错)

召回率:分母是原本的正类,召回率的提出是让模型预测到所有想被预测到的样本(就算多预测一些错的,也能接受)

召回率和精确率二者整体是呈负相关关系,局部可能正相关:

  • 当TP增加,召回率一定也增加(TP/实际为正样本数量不变)
  • 而对于精确率:TP增大,FP可能减小也可能增大(更容易增大)。TP增加,FP减小这是理想情况(低偏差),更符合实际情况的是TP增加FP也增加,即分母(TP+FP)更容易增大,精确率则更容易减小。当分子TP增加的部分没有分母增加的多时,精确率减小,
  • 反映到PR曲线上,召回率和精确率整体负相关,但局部可能正相关,例如分子TP增大1,分母(TP增大1+FP减小2)减小,精确率增大。
  • 总结一句话就是:TP增大,召回率一定增大,而精确率更容易减小

precision:focus在不出现错误的分类(宁可漏掉,不能出错)

recall:focus在分类不出现遗漏(宁可出错,不能漏掉)


 

假设你很穷,地主老爷送了一堆掺了沙子(N)的大米(P),现在要做饭了,需要将大米(P)跟沙子(N)进行分离,将掺了沙子(N)的大米(P)分成大米堆(P类)与沙子堆(N类),做饭用大米堆(P类),沙子堆(N类)则选择丢弃,以下有几个指标可以评估分离的好坏程度:

大米堆(P类)=TP+FP

沙子堆(N类)=TN+FN

1、准确率=(TP+TN)/(TP+FP+TN+FN)——全局预测准确性

能成功地(T)把大米(TP)放进大米堆(TP+FP),成功地(T)把沙子(TN)放进沙子堆(TN+FN),综合成功率是多少呢?这就是准确率的关注点,看全局的分类能力,不仅要把大米(TP)分对(T),还要把沙子(TN)也分对(T)。

2、精确率=TP/(TP+FP)——正分类里的预测准确性

准确率有个缺陷,要求太高了。比如你的目的就是煮饭,也就是说你更关注大米堆(TP+FP),你不需要操心沙子(TN)到底有没有被成功地(T)分类到沙子堆(TN+FN)。因此,只要大米堆(TP+FP)里的大米(TP)比例越多,那你做饭的时候,大概率吃到的还是大米(TP),而不是沙子(FN)。因此精确率就是看大米堆(TP+FP)里拥有的可食用大米(TP)比例,也可理解为将来做饭用的大米精度(浓度)。

3、召回率=TP/(TP+FN)——正样本的预测准确性

精确率关注的是吃饭时候,尽可能不要吃到沙子,所以他不关注粮食是否浪费的问题,而召回率关注的就是粮食浪费的问题,毕竟现在提倡节约,所以召回率就是关注大米(TP)样本中被成功地(T)分类到大米堆(P堆)的比例。“召回率”可以理解为,在所有大米(TP+FN)中回收实际食用的大米(TP)的比例。

这篇关于释机器学习中的召回率、精确率、准确率的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/787121

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件