线性代数笔记13--正交向量和正交子空间

2024-03-08 02:12

本文主要是介绍线性代数笔记13--正交向量和正交子空间,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0. 四个子空间

在这里插入图片描述

1. 正交向量

两向量点乘为0,向量正交。
A ⊤ B = 0 A^{\top}B=0 AB=0

勾股定理
∣ ∣ x ∣ ∣ 2 + ∣ ∣ y 2 ∣ ∣ = ∣ ∣ x + y ∣ ∣ 2 ||x||^2+||y^2||=||x+y||^2 ∣∣x2+∣∣y2∣∣=∣∣x+y2
验证正交条件

∣ ∣ x ∣ ∣ 2 = x ⊤ x = x x ⊤ ∣ ∣ y ∣ ∣ 2 = y ⊤ y = y y ⊤ ∣ ∣ x ∣ ∣ 2 + ∣ ∣ y 2 ∣ ∣ = ∣ ∣ x + y ∣ ∣ 2 ⟺ x ⊤ x + y ⊤ y = ( x + y ) ( x + y ) ⊤ = ( x + y ) ( x ⊤ + y ⊤ ) = x x ⊤ + x y ⊤ + y x ⊤ + y y ⊤ y x ⊤ = x ⊤ y = x y ⊤ = x ⊤ y 2 x ⊤ y = 0 x ⊤ y = 0 ||x||^2=x^{\top}x=xx^{\top}\\ ||y||^2=y^{\top}y=yy^{\top}\\ ||x||^2+||y^2||=||x+y||^2 \iff\\ x^{\top}x+y^{\top}y=(x+y)(x+y)^{\top}=(x+y)(x^{\top}+y^{\top})=\\ xx^{\top}+xy^{\top}+yx^{\top}+yy^{\top}\\ yx^{\top}=x^{\top}y=xy^{\top}=x^{\top}y\\ 2x^{\top}y=0\\ x^{\top}y=0 ∣∣x2=xx=xx∣∣y2=yy=yy∣∣x2+∣∣y2∣∣=∣∣x+y2xx+yy=(x+y)(x+y)=(x+y)(x+y)=xx+xy+yx+yyyx=xy=xy=xy2xy=0xy=0

也即垂直的条件
x ⊤ y = 0 x^{\top}y=0 xy=0

举例:
x = [ 1 2 3 ] y = [ 2 − 1 0 ] x + y = [ 3 1 3 ] ∣ x ∣ 2 + ∣ y ∣ 2 = 1 + 4 + 9 + 4 + 1 = 19 ∣ x + y ∣ 2 = 9 + 9 + 1 = 19 x=\begin{bmatrix} 1 \\ 2\\ 3 \end{bmatrix} y=\begin{bmatrix}2 \\ -1\\ 0 \end{bmatrix}\\ x+y=\begin{bmatrix} 3 \\ 1\\ 3 \end{bmatrix}\\ |x|^2+|y|^{2}=1+4+9+4+1=19\\ |x+y|^2=9+9+1=19 x= 123 y= 210 x+y= 313 x2+y2=1+4+9+4+1=19x+y2=9+9+1=19

2. 正交子空间

空间 S S S正交空间 T T T:
∀ s → ∈ S , ∀ t → ∈ T : s → t → = 0 ⟺ s → ⊥ t → \forall \overrightarrow{s} \in S,\forall \overrightarrow{t} \in T: \overrightarrow{s}\overrightarrow{t}=0 \iff \overrightarrow{s} \perp \overrightarrow{t} s S,t T:s t =0s t

方阵行空间 C ( A ⊤ ) C(A^{\top}) C(A)与零空间 N ( A ) N(A) N(A)正交证明

A X = 0 [ r 1 r 2 r 3 . . . r m ] y = [ r 1 r 2 r 3 . . . r m ] [ x 1 x 2 r 3 . . . r n ] = [ 0 0 0 . . . 0 ] AX=0\\ \begin{bmatrix} r_1\\r_2\\r_3\\...\\r_m \end{bmatrix} y=\begin{bmatrix} r_1\\r_2\\r_3\\...\\r_m \end{bmatrix} \begin{bmatrix} x_1\\x_2\\r_3\\...\\r_n \end{bmatrix}= \begin{bmatrix} 0\\0\\0\\...\\0 \end{bmatrix} AX=0 r1r2r3...rm y= r1r2r3...rm x1x2r3...rn = 000...0
可以得到
y ⊥ r k y ⊥ a k r k y ⊥ ∑ k = 1 m a k r k y \perp r_k\\ y \perp a_kr_k\\ y \perp \sum_{k=1}^{m}a_kr_k yrkyakrkyk=1makrk
y y y N ( A ) N(A) N(A)空间任意一向量,所以得证。

N ( A ) 与 C ( A ⊤ ) N(A)与C(A^{\top}) N(A)C(A)是空间 R n R^{n} Rn中的正交全集。

3. 求解无解的 A X = b AX=b AX=b

求解无解的 A X = b AX=b AX=b是什么意思呢?
假设矩阵 m > n m \gt n m>n, b b b不能由 A A A中各列线性组合得到时。

实际情况就是,测量数据多于实际需要数据;

测量数据中可能混入了出错的数据,我们需要把错误的数据给筛选出去。

解决办法: 同时左乘 A ⊤ A^{\top} A变为了一个对称矩阵。
A X = b ⟶ A ⊤ A X ^ = A ⊤ b AX=b \longrightarrow A^{\top}A\hat{X}=A^{\top}b AX=bAAX^=Ab

N ( A ⊤ A ) N(A^{\top}A) N(AA)
不一定总可逆。

若矩阵
A = [ 1 1 1 2 1 5 ] A ⊤ = [ 1 1 1 1 2 5 ] A ⊤ A = [ 3 8 8 30 ] A= \begin{bmatrix} 1 & 1\\ 1 & 2\\ 1 & 5\\ \end{bmatrix} A^{\top}= \begin{bmatrix} 1 & 1 & 1\\ 1 & 2 & 5\\ \end{bmatrix}\\ A^{\top}A= \begin{bmatrix} 3 & 8\\ 8 & 30\\ \end{bmatrix} A= 111125 A=[111215]AA=[38830]
此时 A ⊤ A A^{\top}A AA可逆


A = [ 1 1 1 1 1 1 ] A ⊤ = [ 1 1 1 1 1 1 ] A ⊤ A = [ 3 3 3 3 ] A= \begin{bmatrix} 1 & 1\\ 1 & 1\\ 1 & 1\\ \end{bmatrix} A^{\top}= \begin{bmatrix} 1 & 1 & 1\\ 1 & 1 & 1\\ \end{bmatrix}\\ A^{\top}A= \begin{bmatrix} 3 & 3\\ 3 & 3\\ \end{bmatrix} A= 111111 A=[111111]AA=[3333]
此时 A ⊤ A A^{\top}A AA不可逆。

性质
N ( A ⊤ A ) = N ( A ⊤ ) r a n k ( A ⊤ A ) = r a n k ( A ) N(A^{\top}A)=N(A^{\top})\\ rank(A^{\top}A)=rank(A) N(AA)=N(A)rank(AA)=rank(A)

下节再证明吧。

这篇关于线性代数笔记13--正交向量和正交子空间的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/785641

相关文章

Tolua使用笔记(上)

目录   1.准备工作 2.运行例子 01.HelloWorld:在C#中,创建和销毁Lua虚拟机 和 简单调用。 02.ScriptsFromFile:在C#中,对一个lua文件的执行调用 03.CallLuaFunction:在C#中,对lua函数的操作 04.AccessingLuaVariables:在C#中,对lua变量的操作 05.LuaCoroutine:在Lua中,

AssetBundle学习笔记

AssetBundle是unity自定义的资源格式,通过调用引擎的资源打包接口对资源进行打包成.assetbundle格式的资源包。本文介绍了AssetBundle的生成,使用,加载,卸载以及Unity资源更新的一个基本步骤。 目录 1.定义: 2.AssetBundle的生成: 1)设置AssetBundle包的属性——通过编辑器界面 补充:分组策略 2)调用引擎接口API

《offer来了》第二章学习笔记

1.集合 Java四种集合:List、Queue、Set和Map 1.1.List:可重复 有序的Collection ArrayList: 基于数组实现,增删慢,查询快,线程不安全 Vector: 基于数组实现,增删慢,查询快,线程安全 LinkedList: 基于双向链实现,增删快,查询慢,线程不安全 1.2.Queue:队列 ArrayBlockingQueue:

操作系统实训复习笔记(1)

目录 Linux vi/vim编辑器(简单) (1)vi/vim基本用法。 (2)vi/vim基础操作。 进程基础操作(简单) (1)fork()函数。 写文件系统函数(中等) ​编辑 (1)C语言读取文件。 (2)C语言写入文件。 1、write()函数。  读文件系统函数(简单) (1)read()函数。 作者本人的操作系统实训复习笔记 Linux

LVGL快速入门笔记

目录 一、基础知识 1. 基础对象(lv_obj) 2. 基础对象的大小(size) 3. 基础对象的位置(position) 3.1 直接设置方式 3.2 参照父对象对齐 3.3 获取位置 4. 基础对象的盒子模型(border-box) 5. 基础对象的样式(styles) 5.1 样式的状态和部分 5.1.1 对象可以处于以下状态States的组合: 5.1.2 对象

DDS信号的发生器(验证篇)——FPGA学习笔记8

前言:第一部分详细讲解DDS核心框图,还请读者深入阅读第一部分,以便理解DDS核心思想 三刷小梅哥视频总结! 小梅哥https://www.corecourse.com/lander 一、DDS简介         DDS(Direct Digital Synthesizer)即数字合成器,是一种新型的频率合成技术,具有低成本、低功耗、高分辨率、频率转换时间短、相位连续性好等优点,对数字信

数据库原理与安全复习笔记(未完待续)

1 概念 产生与发展:人工管理阶段 → \to → 文件系统阶段 → \to → 数据库系统阶段。 数据库系统特点:数据的管理者(DBMS);数据结构化;数据共享性高,冗余度低,易于扩充;数据独立性高。DBMS 对数据的控制功能:数据的安全性保护;数据的完整性检查;并发控制;数据库恢复。 数据库技术研究领域:数据库管理系统软件的研发;数据库设计;数据库理论。数据模型要素 数据结构:描述数据库

【软考】信息系统项目管理师(高项)备考笔记——信息系统项目管理基础

信息系统项目管理基础 日常笔记 项目的特点:临时性(一次性)、独特的产品、服务或成果、逐步完善、资源约束、目的性。 临时性是指每一个项目都有确定的开始和结束日期独特性,创造独特的可交付成果,如产品、服务或成果逐步完善意味着分步、连续的积累。例如,在项目早期,项目范围的说明是粗略的,随着项目团队对目标和可交付成果的理解更完整和深入时,项目的范围也就更具体和详细。 战略管理包括以下三个过程

【软考】信息系统项目管理师(高项)备考笔记——信息化与信息系统

信息化与信息系统 最近在备考信息系统项目管理师软考证书,特记录笔记留念,也希望可以帮到有需求的人。 因为这是从notion里导出来的,格式上可能有点问题,懒的逐条修改了,还望见谅! 日常笔记 核心知识 信息的质量属性:1.精确性 2.完整性 3.可靠性 4.及时性 5.经济性 6.可验证下 7.安全性 信息的传输技术(通常指通信、网络)是信息技术的核心。另外,噪声影响的是信道

陀螺仪LSM6DSV16X与AI集成(8)----MotionFX库解析空间坐标

陀螺仪LSM6DSV16X与AI集成.8--MotionFX库解析空间坐标 概述视频教学样品申请源码下载开启CRC串口设置开启X-CUBE-MEMS1设置加速度和角速度量程速率选择设置FIFO速率设置FIFO时间戳批处理速率配置过滤链初始化定义MotionFX文件卡尔曼滤波算法主程序执行流程lsm6dsv16x_motion_fx_determin欧拉角简介演示 概述 本文将探讨