线性代数笔记13--正交向量和正交子空间

2024-03-08 02:12

本文主要是介绍线性代数笔记13--正交向量和正交子空间,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0. 四个子空间

在这里插入图片描述

1. 正交向量

两向量点乘为0,向量正交。
A ⊤ B = 0 A^{\top}B=0 AB=0

勾股定理
∣ ∣ x ∣ ∣ 2 + ∣ ∣ y 2 ∣ ∣ = ∣ ∣ x + y ∣ ∣ 2 ||x||^2+||y^2||=||x+y||^2 ∣∣x2+∣∣y2∣∣=∣∣x+y2
验证正交条件

∣ ∣ x ∣ ∣ 2 = x ⊤ x = x x ⊤ ∣ ∣ y ∣ ∣ 2 = y ⊤ y = y y ⊤ ∣ ∣ x ∣ ∣ 2 + ∣ ∣ y 2 ∣ ∣ = ∣ ∣ x + y ∣ ∣ 2 ⟺ x ⊤ x + y ⊤ y = ( x + y ) ( x + y ) ⊤ = ( x + y ) ( x ⊤ + y ⊤ ) = x x ⊤ + x y ⊤ + y x ⊤ + y y ⊤ y x ⊤ = x ⊤ y = x y ⊤ = x ⊤ y 2 x ⊤ y = 0 x ⊤ y = 0 ||x||^2=x^{\top}x=xx^{\top}\\ ||y||^2=y^{\top}y=yy^{\top}\\ ||x||^2+||y^2||=||x+y||^2 \iff\\ x^{\top}x+y^{\top}y=(x+y)(x+y)^{\top}=(x+y)(x^{\top}+y^{\top})=\\ xx^{\top}+xy^{\top}+yx^{\top}+yy^{\top}\\ yx^{\top}=x^{\top}y=xy^{\top}=x^{\top}y\\ 2x^{\top}y=0\\ x^{\top}y=0 ∣∣x2=xx=xx∣∣y2=yy=yy∣∣x2+∣∣y2∣∣=∣∣x+y2xx+yy=(x+y)(x+y)=(x+y)(x+y)=xx+xy+yx+yyyx=xy=xy=xy2xy=0xy=0

也即垂直的条件
x ⊤ y = 0 x^{\top}y=0 xy=0

举例:
x = [ 1 2 3 ] y = [ 2 − 1 0 ] x + y = [ 3 1 3 ] ∣ x ∣ 2 + ∣ y ∣ 2 = 1 + 4 + 9 + 4 + 1 = 19 ∣ x + y ∣ 2 = 9 + 9 + 1 = 19 x=\begin{bmatrix} 1 \\ 2\\ 3 \end{bmatrix} y=\begin{bmatrix}2 \\ -1\\ 0 \end{bmatrix}\\ x+y=\begin{bmatrix} 3 \\ 1\\ 3 \end{bmatrix}\\ |x|^2+|y|^{2}=1+4+9+4+1=19\\ |x+y|^2=9+9+1=19 x= 123 y= 210 x+y= 313 x2+y2=1+4+9+4+1=19x+y2=9+9+1=19

2. 正交子空间

空间 S S S正交空间 T T T:
∀ s → ∈ S , ∀ t → ∈ T : s → t → = 0 ⟺ s → ⊥ t → \forall \overrightarrow{s} \in S,\forall \overrightarrow{t} \in T: \overrightarrow{s}\overrightarrow{t}=0 \iff \overrightarrow{s} \perp \overrightarrow{t} s S,t T:s t =0s t

方阵行空间 C ( A ⊤ ) C(A^{\top}) C(A)与零空间 N ( A ) N(A) N(A)正交证明

A X = 0 [ r 1 r 2 r 3 . . . r m ] y = [ r 1 r 2 r 3 . . . r m ] [ x 1 x 2 r 3 . . . r n ] = [ 0 0 0 . . . 0 ] AX=0\\ \begin{bmatrix} r_1\\r_2\\r_3\\...\\r_m \end{bmatrix} y=\begin{bmatrix} r_1\\r_2\\r_3\\...\\r_m \end{bmatrix} \begin{bmatrix} x_1\\x_2\\r_3\\...\\r_n \end{bmatrix}= \begin{bmatrix} 0\\0\\0\\...\\0 \end{bmatrix} AX=0 r1r2r3...rm y= r1r2r3...rm x1x2r3...rn = 000...0
可以得到
y ⊥ r k y ⊥ a k r k y ⊥ ∑ k = 1 m a k r k y \perp r_k\\ y \perp a_kr_k\\ y \perp \sum_{k=1}^{m}a_kr_k yrkyakrkyk=1makrk
y y y N ( A ) N(A) N(A)空间任意一向量,所以得证。

N ( A ) 与 C ( A ⊤ ) N(A)与C(A^{\top}) N(A)C(A)是空间 R n R^{n} Rn中的正交全集。

3. 求解无解的 A X = b AX=b AX=b

求解无解的 A X = b AX=b AX=b是什么意思呢?
假设矩阵 m > n m \gt n m>n, b b b不能由 A A A中各列线性组合得到时。

实际情况就是,测量数据多于实际需要数据;

测量数据中可能混入了出错的数据,我们需要把错误的数据给筛选出去。

解决办法: 同时左乘 A ⊤ A^{\top} A变为了一个对称矩阵。
A X = b ⟶ A ⊤ A X ^ = A ⊤ b AX=b \longrightarrow A^{\top}A\hat{X}=A^{\top}b AX=bAAX^=Ab

N ( A ⊤ A ) N(A^{\top}A) N(AA)
不一定总可逆。

若矩阵
A = [ 1 1 1 2 1 5 ] A ⊤ = [ 1 1 1 1 2 5 ] A ⊤ A = [ 3 8 8 30 ] A= \begin{bmatrix} 1 & 1\\ 1 & 2\\ 1 & 5\\ \end{bmatrix} A^{\top}= \begin{bmatrix} 1 & 1 & 1\\ 1 & 2 & 5\\ \end{bmatrix}\\ A^{\top}A= \begin{bmatrix} 3 & 8\\ 8 & 30\\ \end{bmatrix} A= 111125 A=[111215]AA=[38830]
此时 A ⊤ A A^{\top}A AA可逆


A = [ 1 1 1 1 1 1 ] A ⊤ = [ 1 1 1 1 1 1 ] A ⊤ A = [ 3 3 3 3 ] A= \begin{bmatrix} 1 & 1\\ 1 & 1\\ 1 & 1\\ \end{bmatrix} A^{\top}= \begin{bmatrix} 1 & 1 & 1\\ 1 & 1 & 1\\ \end{bmatrix}\\ A^{\top}A= \begin{bmatrix} 3 & 3\\ 3 & 3\\ \end{bmatrix} A= 111111 A=[111111]AA=[3333]
此时 A ⊤ A A^{\top}A AA不可逆。

性质
N ( A ⊤ A ) = N ( A ⊤ ) r a n k ( A ⊤ A ) = r a n k ( A ) N(A^{\top}A)=N(A^{\top})\\ rank(A^{\top}A)=rank(A) N(AA)=N(A)rank(AA)=rank(A)

下节再证明吧。

这篇关于线性代数笔记13--正交向量和正交子空间的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/785641

相关文章

MySQL之InnoDB存储页的独立表空间解读

《MySQL之InnoDB存储页的独立表空间解读》:本文主要介绍MySQL之InnoDB存储页的独立表空间,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、独立表空间【1】表空间大小【2】区【3】组【4】段【5】区的类型【6】XDES Entry区结构【

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

MySQL启动报错:InnoDB表空间丢失问题及解决方法

《MySQL启动报错:InnoDB表空间丢失问题及解决方法》在启动MySQL时,遇到了InnoDB:Tablespace5975wasnotfound,该错误表明MySQL在启动过程中无法找到指定的s... 目录mysql 启动报错:InnoDB 表空间丢失问题及解决方法错误分析解决方案1. 启用 inno

在Java中基于Geotools对PostGIS数据库的空间查询实践教程

《在Java中基于Geotools对PostGIS数据库的空间查询实践教程》本文将深入探讨这一实践,从连接配置到复杂空间查询操作,包括点查询、区域范围查询以及空间关系判断等,全方位展示如何在Java环... 目录前言一、相关技术背景介绍1、评价对象AOI2、数据处理流程二、对AOI空间范围查询实践1、空间查

MySQL表空间结构详解表空间到段页操作

《MySQL表空间结构详解表空间到段页操作》在MySQL架构和存储引擎专题中介绍了使用不同存储引擎创建表时生成的表空间数据文件,在本章节主要介绍使用InnoDB存储引擎创建表时生成的表空间数据文件,对... 目录️‍一、什么是表空间结构1.1 表空间与表空间文件的关系是什么?️‍二、用户数据在表空间中是怎么

CentOS7增加Swap空间的两种方法

《CentOS7增加Swap空间的两种方法》当服务器物理内存不足时,增加Swap空间可以作为虚拟内存使用,帮助系统处理内存压力,本文给大家介绍了CentOS7增加Swap空间的两种方法:创建新的Swa... 目录在Centos 7上增加Swap空间的方法方法一:创建新的Swap文件(推荐)方法二:调整Sww

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

查看Oracle数据库中UNDO表空间的使用情况(最新推荐)

《查看Oracle数据库中UNDO表空间的使用情况(最新推荐)》Oracle数据库中查看UNDO表空间使用情况的4种方法:DBA_TABLESPACES和DBA_DATA_FILES提供基本信息,V$... 目录1. 通过 DBjavascriptA_TABLESPACES 和 DBA_DATA_FILES

Linux环境变量&&进程地址空间详解

《Linux环境变量&&进程地址空间详解》本文介绍了Linux环境变量、命令行参数、进程地址空间以及Linux内核进程调度队列的相关知识,环境变量是系统运行环境的参数,命令行参数用于传递给程序的参数,... 目录一、初步认识环境变量1.1常见的环境变量1.2环境变量的基本概念二、命令行参数2.1通过命令编程

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组