Pytorch学习 day06(torchvision中的datasets、dataloader)

2024-03-07 23:44

本文主要是介绍Pytorch学习 day06(torchvision中的datasets、dataloader),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

torchvision的datasets

  • 使用torchvision提供的数据集API,比较方便,
  • 如果在pycharm中下载很慢,可以URL链接到迅雷中进行下载(有些URL链接在源码里)
  • 代码如下:
import torchvision  # 导入 torchvision 库
# 使用torchvision的datasets模块,模块中包含CIFAR10、CIFAR100、ImageNet、COCO等数据集
train_set = torchvision.datasets.CIFAR10("./Dataset", train = True, download = True)    # root 表示数据集的存储路径,train 表示是否是训练集,download 表示是否需要下载
test_set = torchvision.datasets.CIFAR10("./Dataset", train = False, download = True)
  • CIFAR10数据集的每个样本会输出一个元组,第一个元素是PIL格式的图片,第二个元素是该样本的标签,即class,代码如下:
import torchvision  # 导入 torchvision 库
# 使用torchvision的datasets模块,模块中包含CIFAR10、CIFAR100、ImageNet、COCO等数据集
train_set = torchvision.datasets.CIFAR10("./Dataset", train = True, download = True)    # root 表示数据集的存储路径,train 表示是否是训练集,download 表示是否需要下载
test_set = torchvision.datasets.CIFAR10("./Dataset", train = False, download = True)print(train_set[0])  # 输出训练集的第一个样本 ,输出为一个元组,第一个元素为PIL格式图片,第二个元素为标签,标签表示图片的类别,即class
print(train_set.classes) # 输出数据集的类别,即class
img, target = train_set[0]
print(img)  # 输出图片
print(target)  # 输出标签
print(train_set.classes[target])  # 输出训练集第一个样本图片的类别
  • 对数据集进行transforms变换
    • 注意,只需要在调用数据集API时,填入变换对象即可,由于dataset_transforms是Compose类实例化后的对象,所以直接传入即可,代码如下:
import torchvision  # 导入 torchvision 库
from torch.utils.tensorboard import SummaryWriterdataset_transforms = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),  # 将PIL格式图片转换为Tensor格式
])  # Compose函数将多个transforms组合在一起# 使用torchvision的datasets模块,模块中包含CIFAR10、CIFAR100、ImageNet、COCO等数据集
train_set = torchvision.datasets.CIFAR10("./Dataset", train = True, transform=dataset_transforms, download = True)    # root 表示数据集的存储路径,train 表示是否是训练集,transform 表示对数据集进行的变换,download 表示是否下载数据集
test_set = torchvision.datasets.CIFAR10("./Dataset", train = False, transform=dataset_transforms, download = True)writer = SummaryWriter("logs")  # 实例化SummaryWriter类,参数log_dir表示日志文件的存储路径
for i in range(10):img, target = train_set[i]  writer.add_image("train_set_img", img, i) # 将图片写入tensorboardwriter.close()  # 关闭SummaryWriter对象
  • tensorboard的展示结果如下:
    在这里插入图片描述

torchvision中的dataloader

这篇关于Pytorch学习 day06(torchvision中的datasets、dataloader)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/785241

相关文章

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

pytorch+torchvision+python版本对应及环境安装

《pytorch+torchvision+python版本对应及环境安装》本文主要介绍了pytorch+torchvision+python版本对应及环境安装,安装过程中需要注意Numpy版本的降级,... 目录一、版本对应二、安装命令(pip)1. 版本2. 安装全过程3. 命令相关解释参考文章一、版本对

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

从零教你安装pytorch并在pycharm中使用

《从零教你安装pytorch并在pycharm中使用》本文详细介绍了如何使用Anaconda包管理工具创建虚拟环境,并安装CUDA加速平台和PyTorch库,同时在PyCharm中配置和使用PyTor... 目录背景介绍安装Anaconda安装CUDA安装pytorch报错解决——fbgemm.dll连接p

pycharm远程连接服务器运行pytorch的过程详解

《pycharm远程连接服务器运行pytorch的过程详解》:本文主要介绍在Linux环境下使用Anaconda管理不同版本的Python环境,并通过PyCharm远程连接服务器来运行PyTorc... 目录linux部署pytorch背景介绍Anaconda安装Linux安装pytorch虚拟环境安装cu

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用